LTSA和KECA相结合的轴承故障诊断
来源期刊:机械设计与制造2018年第10期
论文作者:高胜利 党伟明 齐咏生 赵小荣
文章页码:27 - 31
关键词:滚动轴承;轴承故障诊断;局部切空间排列算法;KECA;
摘 要:针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实验数据对算法进行了验证,结果表明该方法可有效提取滚动轴承的故障特征,可以对滚动轴承的故障类型精确分类,实现对滚动轴承准确的故障诊断。
高胜利1,2,党伟明1,齐咏生1,赵小荣3
1. 内蒙古工业大学电力学院2. 内蒙古北方龙源风力发电有限责任公司3. 中国移动通信集团内蒙古有限公司
摘 要:针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实验数据对算法进行了验证,结果表明该方法可有效提取滚动轴承的故障特征,可以对滚动轴承的故障类型精确分类,实现对滚动轴承准确的故障诊断。
关键词:滚动轴承;轴承故障诊断;局部切空间排列算法;KECA;