基于实时电路模型的储能系统锂离子电池状态估算

来源期刊:中南大学学报(自然科学版)2021年第2期

论文作者:夏向阳 陈霖华 陈剑 徐志强 曾小勇 石超 周文钊

文章页码:458 - 465

关键词:锂离子电池;荷电状态(SOC);健康状态(SOH);PI控制器

Key words:lithium battery; state of charge(SOC); state of health(SOH); PI controller

摘    要:为了充分发挥锂离子电池在电力系统储能中的潜力,需要准确了解电池组的荷电状态(state of charge,SOC)和健康状态(state of health,SOH),为此,提出一种新的SOC和SOH估算方法。该方法基于锂离子电池二阶电路模型,将锂离子电池实际运行过程中的输出电压测量值和所建立的仿真模型端口电压进行比较,利用PI控制器对所建立的电池模型欧姆内阻和开路电压进行修正,得到更精确的SOC和SOH估计值;最后,进行开展电池的充放电试验。研究结果表明:相比扩展卡尔曼滤波法(Extended Kalman Filter,EKF)和库仑计数法(Coulomb Counting,CC),所提出的方法对SOC和SOH估算精度更高,验证了所提出的策略的有效性。

Abstract: In order to give full play to the potential of lithium-ion batteries in power system energy storage, it is necessary to accurately understand the state of charge(SOC) and state of health(SOH) of batteries, therefore, a new SOC and SOH estimation method was proposed. Based on the second-order circuit model of lithium-ion battery, this method compared the measured output voltage of lithium-ion battery in the actual operation process with the port voltage value of the simulation model. According to the difference between the two values, PI controller was used to modify the ohmic internal resistance and no-load voltage of the battery model to obtain more accurate SOC and SOH estimation values. Finally, the battery charge and discharge test were made. The results show that the SOC and SOH estimation accuracies of the proposed strategy are higher than those of the extended Kalman filter (EKF) and Coulomb counting method(CC), which verifies the effectiveness of the proposed strategy.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号