Modified LiMn0.8Fe0.2PO4 Cathode Materials by In-situ Ring Opening Polymerization of Caprolactam
Yang Nan Guo Longquan Ren Li Wan Liu Xu Lin Zhu Tianxi
Polymer Science and Engineering Research Institute,Hebei University of Technology
Abstract:
LiMn0.8Fe0.2PO4(LMFP)cathode material was prepared by solvothermal method with water/ethylene glycol as the solvent..Different amounts of caprolactam(CL)were added to restrict the growth of LMFP crystal by the in-situ ring opening polymerization of CL.Then,the LMFP-CL/C materials were obtained by coating LMFP with glucose through ball milling and calcining processes.The morphologies and microstructure of the LMFP-CL/C materials were characterized by nanometer particle and potential size analyzer,Xray diffraction(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The electrochemical performance of the composite was tested by charging/discharging test system,cyclic voltammetry and AC impedance.The results showed that:compared to LMFP/C,when the amount of CL was 0.04 mol,the average particle size of LMFP-CL0.04/C particles decreased from 274.8 nm to 171.6 nm.The LMFP-CL0.04/C exhibited a discharge specific capacity of 164.3,158.4,144.8,133.7,104.8 and 69.6 mAh·g-1 at 0.2 C,0.5 C,1.0 C,2.0 C,5.0 C and 10.0 C,which were 12.4%,20.2%,18.8%,29.9%,81.9% and 86.8% higher than that of LMFP/C,respectively.The discharge specific capacity of LMFP-CL0.04/C decreased to 133.7 mAh·g-1 and the discharge capacity retention was 92.3% after 100 cycles at 1.0 C.The addition of CL effectively limited the growth of LMFP particle size,then the electrochemical properties of the material were improved due to the shortened transport channel of Li+.
Keyword:
LiMn0.8Fe0.2PO4;caprolactam;solvothermal method;in-situ ring opening polymerization;cathode materials;
Received: 2019-04-08
锂离子电池作为新一代能源材料,目前已得到广泛应用,而正极材料作为其核心部分,很大程度上决定了锂离子电池的性能
[1,2]。橄榄石型Li M?PO4(M=Fe,Mn等)正极材料因其稳定的工作电压及较高的能量密度备受关注
[3,4,5]。与已商业化的Li Fe PO4(工作电压3.4 V vs.Li+/Li)相比,Li Mn PO4工作电压高达4.1 V,其能量密度较Li Fe PO4高20%,但Li Mn PO4较低的电子电导率与锂离子扩散系数严重制约了其电化学性能的发挥
[6,7]。目前,针对以上缺点采用的改性方法主要包括:颗粒纳米化、碳包覆和金属离子掺杂
[8,9]。
LMFP-CL/C及LMFP/C样品的晶体结构采用德国Bruker公司D8 Focus型X射线衍射仪(X-ray dif?fractometer,XRD)进行表征。样品粒径及分布采用英国Malvin公司Nano-ZS90型粒度分析仪进行测试。样品的形貌则由美国FEI公司Nano SEM450型扫描电子显微镜(scanning electron microscope,SEM)和Tecnai G2 F20型透射电子显微镜(transmis?sion electron microscope,TEM)进行表征。
图5为LMFP/C和LMFP-CL/C样品在0.2C倍率下的首次充放电曲线。由图5可知,4种样品在4.1和3.4 V左右的电压平台分别对应Mn3+/Mn2+与Fe3+/Fe2+的氧化还原电对。LMFP/C样品的充放电平台较短,其首次放电比容量为150.6 m Ah·g-1,首次充放电效率为89.6%。LMFP-CL/C样品的放电平台均有所延长,LMFP-CL0.02/C,LMFP-CL0.04/C和LM?FP-CL0.06/C样品的首次放电比容量分为160.5,164.4和164.7 m Ah·g-1,首次充放电效率分为94.5%,96.1%和96.9%。并且,3种样品的充放电平台电压差(ΔV)均小于LMFP/C样品,说明其极化程度较小。样品的粒径减小,比表面积增加,有利于电解液与正极材料之间的充分接触,电荷传输效率增大,使其电化学性能得到提升。
图3 LMFP/C和LMFP-CL/C样品的形貌表征
Fig.3 Morphorlogy of different materials:SEM images of LMFP/C(a),LMFP-CL0.02/C(b),LMFP-CL0.04/C(c),LMFP-CL0.06/C(d);TEM images of LMFP-CL0.04/C(e);HR-TEM images of LMFP-CL0.04/C(f)
图4 LMFP/C和LMFP-CL/C样品的粒径分布曲线
Fig.4 Size distribution curves of LMFP/C and LMFP-CL/C
图5 LMFP/C和LMFP-CL/C在0.2C下的首次充放电曲线
Fig.5 Initial charge-discharge curves of LMFP/C and LMFP-CL/C at 0.2C
图6为LMFP/C和LMFP-CL/C样品的倍率性能曲线。由图6可以看出,加入己内酰胺后3种样品的倍率性能明显提升,其中性能最优的LMFP-CL0.04/C样品在0.2C,0.5C,1.0C,2.0C,5.0C和10.0C倍率下的放电比容量分别为164.3,158.4,144.8,133.7,104.8和69.6 m Ah·g-1,相比于不加己内酰胺时LMFP/C样品的146.2,131.8,121.9,102.9,57.6和37.4 m Ah·g-1分别提高了12.4%,20.2%,18.8%,29.9%,81.9%和86.8%。Li+在材料内部的扩散速率是影响材料倍率性能的主要因素。己内酰胺的加入可以使样品的颗粒粒径减小,比表面积增加,缩短了Li+在颗粒内的传输通道,使其倍率性能得到明显提高。
图6 LMFP/C和LMFP-CL/C样品的倍率性能曲线
Fig.6 Rate performance curves of LMFP/C and LMFP-CL/C
图7为LMFP/C和LMFP-CL/C样品在1.0C倍率下的循环性能曲线。由图7可以看出,LMFP/C样品的首次放电比容量为126 m Ah·g-1,循环100次后其容量保持率为82.8%。LMFP-CL0.02/C,LMFP-CL0.04/C和LMFP-CL0.06/C样品的首次放电比容量分别为141.5,144.8和145.8 m Ah·g-1,循环100次后,容量保持率分别为91.8%,92.3%和87.2%。相比于LMFP/C,LMFP-CL0.02/C,LMFP-CL0.04/C,LMFP-CL0.06/C样品的放电比容量及循环性能均得以提升,并且LMFP-CL0.04/C样品性能最优。较小的颗粒粒径,有利于充放电过程中内层Li+的脱嵌;并且,粒径减小使其比表面积增大,有利于正极材料与电解液的充分接触,增加了Li+与电子在同一位置获得的同步性,有效抑制了极化现象,提高了材料的循环稳定性。当己内酰胺的添加量为0.06 mol时,由于部分颗粒的粒径过小导致烧结过程中团聚现象加剧,使LMFP-CL0.06/C样品的电化学性能较LMFP-CL0.04/C有所下降。
图7 LMFP/C和LMFP-CL/C样品在1.0C下的循环性能曲线
Fig.7 Cycling performance of LMFP/C and LMFP-CL/C at 1.0C
Table 2 Simulated results of electrochemical impedance values and lithium ion diffusion coefficients
3 结论
在溶剂热过程中加入己内酰胺,利用其一定温度水解后在仍处于生长过程中的LMFP表面完成原位开环聚合反应,限制了LMFP晶体继续生长。当己内酰胺的添加量为0.04 mol时,LMFP-CL0.04/C样品综合电化学性能最优。相比于LMFP/C样品,其平均粒径由274.8 nm降至171.6 nm,该材料在0.2C,0.5C,1.0C,2.0C,5.0C和10.0C倍率下的首次放电比容量分别达到164.3,158.4,144.8,133.7,104.8和69.6 m Ah·g-1,较LMFP/C分别提高了12.4%,20.2%,18.8%,29.9%,81.9%和86.8%,1.0C下经100次充放电循环后,其放电比容量为133.7 m Ah·g-1,容量保持率达92.3%。