障碍物条件下智能车辆换道路径规划的近优解

来源期刊:中南大学学报(自然科学版)2011年第z1期

论文作者:李玮 段建民 龚建伟

文章页码:505 - 511

关键词:车辆换道;路径规划;近优解;多项式;神经网络

Key words:vehicles lane change; path planning; near-optimal solutions; polynomials; neural network

摘    要:以智能车辆换道过程为研究对象,结合多项式理论和动态RBF神经网络,提出1种车辆换道路径规划方法,得到在一定边界条件下智能车辆换道路径的近优解。该方法首先利用矩形包裹换道车辆及障碍车辆并对其进行碰撞检测,然后利用动态RBF神经网络生成合理的车辆换道边界条件,最后在边界条件以及性能指标函数的约束下,根据多项式理论得到以时间为参数的换道路径近优解。其中动态RBF神经网络具备在线学习能力,能够利用具有优良性能指标的边界条件实现自更新。计算机仿真验证了该方法的正确性及有效性,尤其是在复杂路面情况下体现了该换道路径规划算法的优势。

Abstract: Based on polynomial theory and radial basis function (RBF) neural network, a path planning method for the intelligent vehicles lane changing process was proposed. The near-optimal solutions of the lane changing path in the fixed boundary conditions can be obtained by this method. In this method the lane changing vehicle and obstacle vehicles were presented by rectangle, and then in the constraints of collision detect conditions, boundary conditions and comfort performance index that the near-optimal solutions of the lane changing path were calculated. In addition, the dynamic RBF neural network was used to solve the problem that how to select a reasonable boundary conditions. By this dynamic RBF neural network the reasonable boundary conditions were calculated and the neural network has the function of online learning, which was optimized by itself. Simulation results prove the correctness and feasibility of this algorithm, and illustrative examples show the advantage of this new method in the case of lane changing with multiple obstacles.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号