花岗伟晶岩型锂矿床研究进展及展望

胡晓君1, 2, 李  欢1, 2

(1. 中南大学 地球科学与信息物理学院,长沙 410083;

2. 中南大学 有色金属成矿预测与地质环境监测教育部重点实验室,长沙 410083)

摘 要:

花岗伟晶岩型锂矿作为锂矿的重要来源,全球分布十分广泛,引起了世界各国的勘查兴趣。本文通过对国内外的重要的花岗伟晶岩型锂矿矿床地质特征和研究进展进行总结归纳,获得以下认识:1) 花岗伟晶岩型锂矿分布广泛且资源量大,是锂资源的主要开发对象;2) 不管是稳定的地台,还是活跃的造山带,都可能是花岗伟晶岩型锂矿的成矿构造环境;3) 矿床从太古宙到新生代都有发育,但中国的花岗伟晶岩型锂矿成矿主要集中在燕山期;4) 锂成矿具有循环性的特征,花岗伟晶岩中的锂也可由沉积岩提供;一般以中高压、中温成矿流体为主,并具有低盐度的特征。此外,锂同位素近年来已成为一个锂成矿过程的良好示踪工具,岩体锂同位素组成可以反映花岗岩和伟晶岩在形成时的源区性质。国内外学者对伟晶岩型锂矿的锂同位素分馏机制开展了一系列研究,普遍认为花岗伟晶岩型锂矿与花岗岩岩浆结晶分异作用、地壳部分熔融密切相关。且锂同位素的特征可指示锂矿母岩成因类型,对于找矿方向的厘定有一定的指示意义,显示出重要的研究与应用前景。不同地区的花岗伟晶岩型锂矿床在矿体形态、遥感、地球化学、地球物理等特征方面表现出较大差异性,找矿过程中应寻找最有效的勘查技术手段,因地制宜,拓展找矿思路。

关键词:

花岗伟晶岩锂辉石成矿时代锂同位素找矿方向

文章编号:1004-0609(2021)-11-3468-21      中图分类号:P61       文献标志码:A

引文格式:胡晓君, 李  欢. 花岗伟晶岩型锂矿床研究进展及展望[J]. 中国有色金属学报, 2021, 31(11): 3468-3488. DOI: 10.11817/j.ysxb.1004.0609.2021-42169

HU Xiao-jun, LI Huan. Research progress and prospect of granitic pegmatite-type lithium deposits[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11): 3468-3488. DOI: 10.11817/j.ysxb.1004.0609.2021-42169

锂资源在新兴产业中发挥着举足轻重的作用,是低碳化发展的关键元素[1-4]。锂及其化合物因具有高储能、软质地、轻密度、大比热、低能耗和强电化学活性等多种卓越的性能,在新能源、可控核聚变、航空航天工业等领域发挥着显著的作用,有着“21世的能源金属”之称,被各国列为关键金属,其战略地位不断提升,掀起了世界各国新一轮的矿产资源争夺热潮和新兴材料研究热潮[1, 5-7]。VIKSTROM等[8]认为世界各主要国家对锂的需求将不断增大,预测直到21世纪90年代才会达到最大产能。

花岗伟晶岩型稀有金属矿床因其所含有的稀有金属元素的多样性和高品位而广为人知[9-10],是最重要的稀有金属矿床类型之一,也是锂矿的传统来源,其储量和产量占据重要地位[5, 11]。近年来,由于锂电池的消耗量显著增加,全球锂消费呈现出高速增长态势(见图1),在大宗矿产萎靡不振的状况下,锂矿价格却持续飙升(见图2;2020年碳酸锂交易受新冠疫情影响而价格疲软),勘查态势愈发活跃,近年来在大型、超大型伟晶岩型锂矿床找矿成果上的突破,成为了市场的最大焦点[12-13]。进入21世纪以来,分析测试手段有了飞速进步,国内外对于花岗伟晶岩型锂矿床的研究取得了丰硕的成果,在锂矿床成矿物质来源、成矿流体演化及性质、锂矿床勘探方法以及锂同位素等方面取得重大突破,大大加深了人们对于这类型矿床成因的理解,促进了本类型矿床的找矿勘探。

本文就目前国内外在花岗伟晶岩型锂铍矿床方面的研究进展进行系统的阐述,以期提升对花岗岩型锂矿床成矿作用的认识,并对一些关键性的问题进行分析讨论,为今后的花岗岩型锂矿找矿工作和研究提供帮助。

图1  近年全球的锂消耗费量[14]

Fig. 1  Worldwide consumption of lithium from in recent years[14]

图2  近年碳酸锂价格走势图[14-15]

Fig. 2  Lithium carbonate price trend chart in recent years[14-15]

1  花岗伟晶岩型锂矿的资源概况

自然界中已发现的锂矿床主要包括两大类:盐湖卤水型和固体型锂矿。后者主要由花岗伟晶岩型和沉积岩型锂矿床两类组成[12, 16-17],某些地下卤水、油田卤水、地热卤水及湖成蒸发岩型中的锂也具有潜在的开发价值[18]。沉积岩型锂矿属于新动向,最近在中国西南发现的碳酸盐黏土型锂资源储量巨大,已引起学者的重视,有望在未来提供巨量锂资源[19]。但就目前而言,全球锂矿床开发还是以卤水型和花岗伟晶岩型为主,其他类型矿床所占比例较小[20-21]。据美国地质调查局统计,截至2020年底,全世界已查明的锂资源量总计达到了8600万t,主要集中在玻利维亚(24%)、阿根廷(22%)、智利(11%)、美国(9%)、澳大利亚(7%)、中国(6%)、刚果(金;3.5%)、加拿大(3.3%)和德国(3%),这些国家合计占据全球总资源量的90%左右[14](见图3)。其中盐湖卤水型的总资源量最大,著名的有由玻利维亚(Salarde Uyuni)、阿根廷(Salarde Hombre Muerto)、智利(Salarde Atacama)组成的“锂三角”区域。但盐湖卤水型矿床的沉积物成分相差大,使得前期资源开发、生产周期长,且卤水中一些成分(如 钾、镁、溴和硼等)限制了锂应对市场的供应能力[16, 20, 22]。伟晶岩型锂矿床的含锂矿物主要为锂辉石。20世纪90年代后期,由于盐湖提锂技术取得突破,其产业化发展迅速,国外的锂辉石矿床提锂生产线大多关闭,我国也由于盐湖提锂的开采成本更低而停止了对伟晶岩型锂矿的勘查。但锂在新能源领域的成功应用,使得市场对锂的需求成倍增长,从花岗伟晶岩锂矿中提锂的优势又逐渐显现出来[23]。相对来说,花岗伟晶岩型锂矿品位高分布广,具有成熟的采选冶技术,供应中断的可能性更小,应对市场的灵活性更强;虽然其总储量和平均规模远小于盐湖卤水型锂矿,但其产量却占全球总产量的一半左右[24-25]

图3  世界主要产地的锂矿资源量份额[14]

Fig. 3  Lithium resources share in major countries of the world[14]

花岗伟晶岩型锂矿分布广泛(见图4),与盐湖卤水型锂矿相比,具有更显著的环境优势,预计在未来市场将占据主导地位[26-28]。世界主要的伟晶岩型锂矿如表1所示,其中著名的有:澳大利亚格林布什锂矿(Greenbushes),是最古老的锂辉石矿之一;加拿大瓦布奇锂矿床(Whabouchi),Li2O平均品位达1.53%,有着“北美最富的世界级伟晶岩型锂矿”之称;中国川西的甲基卡矿床,被誉为亚洲最大的伟晶岩型锂矿,与之共生的稀有金属也有着较高的品位,例如铍等的储量也达到了大型矿床规模。除此之外,典型伟晶岩型锂矿还有美国金斯山锂矿床(Kings Mountain)、刚果(金)马诺诺锂矿床(Manono)、津巴布韦比基塔锂矿床(Bikita)等[29-30]

伟晶岩型锂矿因分布范围广泛,被认为是极具潜力的开采对象,近年来有很多勘查新进展和新成果[12]。例如在中国新疆和田地区新发现的白龙山锂铷多金属矿床,矿体品位高,平均锂品位为0.7%,且矿床规模达到了超大型,估算锂资源量为236.1万t,有望成为我国又一个世界级规模的花岗伟晶岩型巨型锂矿床[25, 31]。在美国缅因州西部巴格山发现的富锂辉石伟晶岩型锂矿,在伟晶岩上部含有高达50%(质量分数)的锂辉石,一些锂辉石晶体的长度超过11 m,2019年的资料显示该矿地区的锂资源量为21.8万t,平均锂品位高达2.18%,比世界上十大锂矿床的平均品位都要高[32]

图4  全球主要花岗伟晶岩型锂矿分布简图(据文献[17, 26]修改)

Fig. 4  Distribution of major granitic pegmatite-type lithium deposits in the world(modified from Refs. [17, 26])

表1  全球主要花岗伟晶岩型锂矿床(以金属锂当量级)

Table 1  Statistics of major granitic pegmatite-type lithium deposits in the world (equivalent to Li metal)

2  花岗伟晶岩型锂矿床成因

2.1  矿床地质特征

作为自然界最轻的金属,锂元素十分活泼,导致内生型锂矿的形成过程中总会受到构造环境的约束。全球伟晶岩型锂矿主要产出于相对稳定、封闭的大地构造环境,如古老结晶地盾、地块等[12];但也有部分产出于活跃的造山构造环境中(如美国阿帕拉契亚褶皱带产出的金斯山锂辉石矿床、中国川西甲基卡锂矿床等),其中,穹窿构造、复背斜、复向斜等是产出由褶皱控制的花岗伟晶岩型锂矿的主要构造环境[17, 59-60]

花岗伟晶岩型锂矿床常赋存在大型花岗岩侵入体上部(或边缘)的交代伟晶岩矿脉中,呈似层状、脉状产出。根据前人研究,花岗伟晶岩型锂矿产出部位还受构造形成的裂隙的影响[6, 61-62]。富含挥发分和锂等稀有元素的伟晶岩浆从母花岗岩浆中分离出来,沿着母岩体周围地层的构造裂隙上升、充填,在相对封闭和稳定的环境中缓慢结晶并分馏形成微斜长石型、微斜长石钠长石型、钠长石型、钠长石锂辉石型、锂(白)云母型等伟晶岩岩脉[63-64]。在伟晶岩矿床分带中,具有工业价值的锂矿体多赋存于钠长石-锂辉石伟晶岩带、石英-锂辉石伟晶岩带中[17, 65]

伟晶岩脉的含矿性与岩体之间空间分布距离有关,且具有一定的规律。从靠近岩体边缘向外,伟晶岩演化程度从简单向复杂变化,稀有金属矿化程度从弱到强变化。完整的脉岩系统的最边缘为石英脉带,远离母岩浆房的花岗伟晶岩含矿性好,接近母岩浆房的花岗伟晶岩含矿性差[60, 66-67](见图5)。一般来说,早期形成的稀有金属矿床靠近母岩体,规模较小。远离母岩体的多为大规模的晚期矿床,岩浆迁移较远,有着较长的成矿时间,所以矿物分带更为复杂,地球化学分异特征的程度更高;除了锂之外,其他稀有金属包括铍、铌、钽、锡等稀有金属矿化也都较好[68-70]

伟晶岩型锂矿可按照有无带状构造划分为两大类:1) 带状构造伟晶岩型锂矿床,如澳大利亚的格林布什锂矿可作为典型代表。成分复杂,锂辉石含量为20%左右,除含锂矿物外,常伴有其他可综合利用的稀有金属矿物,如绿柱石、铌钽铁矿等。

图5  随着分异程度增加,花岗岩与伟晶岩的分带[64, 66-67]

Fig. 5  Regional zonation within pegmatite and granites with increasing magmatic fractionation[64, 66-67]

2) 无带状构造伟晶岩型锂矿床,如美国的金斯山矿床。锂辉石含量可达总岩体的四分之一左右,多为独立的锂矿床,也可能伴有少量的铍和钽[12]。锂辉石是伟晶岩锂矿资源的主要工业矿物,每年从矿石中提取的锂有30%左右都是来自锂辉石,作为一种储量丰富的矿石锂资源,锂辉石属于非常稳定的链状结构铝硅酸盐矿物,常以板状、柱状产出,亦可见棒状或致密隐晶块状集合体,其Li2O含量可达3%至8%[71-72]。除此之外,锂还赋存于锂云母、透锂长石、锂磷铝石、锂霞石等矿物中[5, 73-74]

世界花岗伟晶岩型锂矿在稳定地盾、地块以及活动性强的造山带均有产出,而中国的花岗伟晶岩型锂矿主要集中在阿尔泰锂成矿带、川西锂成矿带、东天山锂成矿带等几个褶皱造山带,尤其是大型超大型花岗伟晶岩型锂矿,主要分布在中国新疆和四川等地。花岗伟晶岩型锂矿是花岗质熔体演化程度最高的产物之一,我国花岗伟晶岩型锂矿的一般性地质特征与世界花岗伟晶岩型锂矿一致。例如,可发育粗大的锂辉石晶体,花岗岩与伟晶岩呈现空间分带性,容矿岩石主要为花岗伟晶岩和蚀变花岗岩,多发现于花岗岩侵入体的边缘,常伴生铍、铌、钽等多种稀有金属等。

2.2  成岩成矿时代

关于花岗伟晶岩型锂矿的成岩成矿年代,前人进行了大量的研究[17, 75]。花岗伟晶岩型锂矿床从太古宙到新生代均有产出。其中,澳大利亚的皮尔甘谷拉(Pilgangoora)矿床成矿时代为太古代,是世界级的锂-钽矿,侵位于皮尔巴拉克拉通绿岩带内。在津巴布韦的比基塔(Bikita)矿床中产出成矿年龄为2617 Ma的含矿伟晶岩,该矿床是全球最大的透锂长石矿山,地处南非-津巴布韦太古宙地盾内,区内分布着非洲最古老的岩石。成矿年龄为2600 Ma的伯尼克湖坦科(Tanco)锂矿,位于北美加拿大地盾,该矿床成矿与太古宙微斜长石花岗岩相关。澳大利亚格林布什(Greenbushes)伟晶岩型锂矿床的成矿共有三个阶段:2527 Ma伟晶岩结晶成矿,2430 Ma伟晶岩在热液作用下蚀变成矿,成矿后期约1100 Ma经变形、变质作用再度活化成矿。美国阿帕拉契亚造山带中金斯山(King Mountain)锂矿床内的伟晶岩形成于373~265 Ma之间,成矿时代为古生代海西期。目前已发现的时代最年轻的大型花岗伟晶岩型锂矿床产于阿富汗东北部的兴都库什山区,该地区产出的伟晶岩在成因上大多与渐新世二云母花岗岩关系密切[23, 30, 49]

中国的花岗伟晶岩型锂矿床成矿过程以“多旋回”为特点,但花岗伟晶岩型锂矿成矿时代主要为中生代印支期-燕山期,中国甲基卡、可尔因、可可托海等伟晶岩型锂矿成矿时代均为中生代。其中,燕山期是中国花岗伟晶岩锂矿床成矿的极盛时期[30](见表2)。中国西部(新疆阿尔泰锂成矿带、东天山锂成矿带、西昆仑-阿尔金锂成矿带和川西松潘-甘孜锂成矿带)伟晶岩型锂矿床成矿时代集中分布在印支晚期-燕山早期[69, 76]。在中国南方地区绝大多数的花岗伟晶岩型锂矿床在燕山期成矿,都与燕山期构造-岩浆活动有关[17, 61]。由图6可见,与全球的花岗伟晶岩型锂矿在各个时代均有锂矿形成不同(从晚元古代至渐新世),中国花岗伟晶岩型锂矿成矿时代(蓝色图案)的峰值出现在燕山期,且暂时还未发现在寒武纪以前和古近纪以来成矿的花岗伟晶岩型锂矿。

图6  全球典型花岗伟晶岩型锂矿成矿时代图[17, 77]

Fig. 6  Metallogenic age of typical granitic pegmatite-type lithium deposits in the world[17, 77]

表2  中国主要花岗伟晶岩型锂矿的成矿年龄

Table 2  Main isotope dating data of granitic pegmatite-type lithium deposits in China

2.3  成矿流体性质与演化

结合前人对花岗伟晶岩型锂矿成矿流体性质的分析[6, 84-85],认为花岗伟晶岩型锂矿的成矿流体多处于中高压和中温环境,以低盐度流体为主,且认为伟晶岩体系成矿熔体、流体的形成可能主要有两个阶段:1) 温度区间为600~850 ℃的岩浆阶段[86],伟晶岩熔体从花岗岩内分异出来;2) 温度区间为300~700 ℃的岩浆-流体过渡阶段[87]。在500~700 ℃条件下,流体中主要形成丰富的绿柱石晶体;在500~600 ℃条件下,流体中主要形成丰富的锂辉石晶体;在300~450 ℃条件下,流体中的水-氯化钠-二氧化碳体系形成[87-91]。这两个阶段并非两个独立阶段,结晶分异作用是主导作用,贯穿了整个过程。随着结晶分异作用的进行,热液交代作用也不断增强[92-94]。但早期的结晶分异对稀有金属元素的积累作用不大,矿化程度不高。随着岩浆演化,结晶分异作用不断进行,Li等成矿元素进入残余岩浆出溶的流体中,晚期流体出现富Li的特征[92, 94]。主流观点认为,伟晶岩是岩浆高度分异的结果,且稀有金属含量与伟晶岩岩浆的分异演化程度呈正相关,一般表现为随着伟晶岩熔体分异演化程度的逐渐加深,Li等稀有金属不断富集[46, 61, 63, 95-98]

成矿流体运移过程中,在还原条件下,CO2、CH4等气体易与流体中的Li等元素结合形成较稳定的络合物,增强了Li的迁移富集能力[99]。当成矿流体运移至裂隙等开放体系时,压力会急速下降,发生减压沸腾作用,CO2气体逸出水-氯化钠-二氧化碳体系,形成流体相分离和流体不混溶;水-氯化钠-二氧化碳体系分离出水-氯化钠、二氧化碳两相体系。同时,CO2、CH4、N2等挥发性气体从流体中分离,成矿流体性质产生较大变化[100],导致含锂矿物在适宜的环境下聚集成矿。锂辉石是大多数花岗伟晶岩型锂矿床的赋矿矿物,这是由于岩浆中最早结晶的富锂矿物就是锂辉石,且当温压条件处于320 ℃、162.12~405.30 MPa时,透锂长石也能分解为锂辉石和石英[101]。成矿流体沸腾作用或液态不混溶作用导致相分离,是伟晶岩型锂矿的重要成矿机制[87, 91, 102-103]。且挥发组分(F、P、CO2)对花岗伟晶岩型锂矿床的迁移、富集与沉淀也起着不容忽视的作用[85, 104-107]。不同的岩浆和热液作用可导致花岗伟晶岩型锂矿及其伴生的其他稀有金属的成矿多样性[37, 84, 108]

2.4  成矿物质来源

内生岩浆锂富集的有利地球动力学背景在造山作用晚期,通常是弧后增生,与陆-陆碰撞同时代,与地壳局部增厚有关,造山后的伸展环境有利于锂富集到外生过程中[6]。由于中等不相容元素的特性,Li元素在部分熔融和壳幔分异的过程中分别倾向于在硅酸盐熔体和地壳中富集[109]。在岩浆演化序列过程中(超基性岩→酸性岩),Li元素含量逐渐增加,在最末端的花岗岩和伟晶岩中含量最高[96]。目前,人们对稀有金属花岗伟晶岩的成因还存在一些争论,有部分学者认为花岗伟晶岩成因是下地壳物质低程度的部分熔融[96, 110],但大部分花岗伟晶岩与花岗岩在成因和空间上都有一定的联系,锂花岗岩也多伴有锂花岗伟晶岩的产出[111-112],伟晶岩的岩浆结晶分异成因也因此被广为接受[113-115]。近年来,在我国四川甲基卡、西昆仑大红柳滩探获的规模巨大的花岗伟晶岩型锂矿都与二云母花岗岩有关[25, 116]。澳洲皮尔布拉地区新太古宙的Pilgangrooa和Greenbushes等伟晶岩型锂矿与高分异的二云母花岗岩、二长花岗岩有关[117-119]。法国的Beauvoir钠长石花岗岩为一个超大型锂铍矿床,其边部发育花岗伟晶岩型锂矿[120]。锂铍伟晶岩为LCT型伟晶岩,大多有着S型花岗岩的成分特征[121-122]

花岗伟晶岩型锂矿一般被认为是内生成因,但实际上,花岗伟晶岩型锂矿中锂的来源问题并没有得到解决。近年来更多的研究表明,锂矿的成矿有“循环性”的特征,可以“内生外成”,也可以“外生内成”,即盐湖卤水中的锂可从深部热卤水中得到,也可以是含矿花岗岩风化剥蚀后被沉积盆地中的黏土物质吸附而富集(见图7);而富含锂的黏土岩经过深埋、重熔、花岗岩化以及结晶分异可以形成内生成因锂矿床[123]。BENSON等[24]通过对比不同构造环境中的岩浆锂的浓度,并通过测定石英熔融包裹体内原位微量元素,得出中等至极度富集锂元素的岩浆在成因上与长英质大陆地壳的参与有关。GODFREY等[124]通过分析盐湖形成过程中锂同位素分馏作用,认为邻近的地热水和火山沉积区的富锂水是安第斯中部 Hombre Muerto 盐湖中的锂元素的主要来源;ORBERGER等[125]分析了阿根廷Puna 地区不同含水层的锂同位素组成,结果显示锂主要来自安山岩、伟晶岩及火成碎屑沉积。这些研究表明,花岗伟晶岩中的锂可以是从沉积岩中继承来的,而沉积盆地中富集的锂也可以是火山作用提供的。

3  花岗伟晶岩型锂矿勘探

3.1地质找矿

1)岩体(脉)标志,伟晶岩型锂矿在空间上的分布与多期次演化晚期的花岗岩体常表现出规律性,从母岩体到边缘的石英脉,矿化由弱到强变化,钠长-锂辉石型伟晶岩脉,可作为直接找矿标志[126]。2)矿物标志,花岗伟晶岩型锂矿化主要以锂辉石、锂云母、透锂长石的形式出现。3)交代蚀变标志,锂矿化与锂云母化、钠长石化有关,一般来说,钠长石化强烈,锂矿化作用越强。4)地貌标志,与围岩相比,伟晶岩锂矿具有较强的抗风化能力,发育的伟晶岩脉以突出的地貌或白色陡坎形式出露。

3.2遥感标志

自20世纪70年代以来,遥感技术在世界范围内被广泛地应用于矿产勘查[127],而直到最近遥感才应用于锂矿勘查。例如,PERROTTA等[128]采用ASTER图像对巴西Vale do Jequitinhonha地区的花岗伟晶岩型锂矿开展了试验制图;MENDES等[129] 在识别未知矿床时,也采用了类似方法来识别锂矿物的光谱特征。CARDOSO-FERNANDES等[130]提出了新的RGB组合、波段比和选择性PCA子集,能够有效区分含矿伟晶岩及其母岩的光谱特征。姚佛军等[131]采用了一种岩性微弱信号增强技术对ASTER遥感数据进行识别,经过处理后的图像可以清楚地识别出伟晶岩脉体、并于野外查证时发现了一处新的锂铍伟晶岩脉体。利用先进的遥感技术对花岗伟晶岩型锂矿的勘探和采矿都具有十分重要的意义,减少了勘探早期对人力上的要求,提高了勘查的效率和可持续性。

图7  破火山口黏土型锂矿的形成示意图[24]

Fig. 7  Schematic diagram for formation of caldera-hosted Li clay deposits[24]

3.3地球化学标志

在大尺度范围内开展地球化学勘查,可以帮助快速圈定靶区,但是锂元素扩散性强,采用化探异常勘查时需要结合当地的地质情况进行综合分析。肖瑞卿等[132]对甲基卡锂矿床进行土壤地球化学勘查,以原生晕、水化学等方法加以辅助;结果显示,锂、铍和铷三者之间的相关性较强。锂品位在空间分布上与硼、铯品位的特征相似[93]。涂其军等[133]在对甲基卡矿床进行矿区或矿床尺度上的水系沉积物地球化学调查时,发现明显的地球化学异常。

3.4地球物理标志

伟晶岩型锂矿与围岩的电阻率和密度的差异明显,利用两者之间的差异可缩小找矿范围:围岩的密度相对较高而电阻率低,与含矿体作为“高阻地质体”具有密度低而电阻率高的特点正好相反,伟晶岩体越厚,对应的电阻率越高[61, 93]。杨荣等[134]通过对伟晶岩型锂矿床开展重力、磁法、电法等方法探测,将综合地球物理探测结果与地质、钻探结果结合,筛选出下一步勘查工作的重点区域。

付小方等[95]综合利用多种找矿手段,提出了第四系覆盖区立体地质综合勘查模型,为隐伏的花岗伟晶岩型锂矿以及其他稀有伟晶岩找矿和勘查提供了技术参考。王登红等[61]以甲基卡伟晶岩型锂矿的找矿实践为例,提出灵活运用“五层楼+地下室”模型能够帮助已经找到矿的区域取得更大的找矿突破。花岗伟晶岩型锂矿的传统勘查、评价方法主要是以地质填图、钻探为主,但实际找矿过程中,仅仅使用传统的地质方法往往是不够的,想要在花岗伟晶岩型锂矿找矿方面有所突破,需要开展多方法的综合探测、分析,结合矿床的实际情况,因地制宜,提高对科学有效的找矿方法的探索,建立合适的勘查模型。

4  前沿及展望

4.1  锂同位素在花岗伟晶岩型锂矿中的应用

锂在自然界主要以+1价的微量元素的形式存在于各种矿物、熔体以及流体中,而以主量元素在锂辉石、锂云母、透锂长石等矿物中存在。由于只有唯一价态,环境中氧逸度的变化不会影响锂同位素分馏[135]。锂有两种稳定同位素,分别是元素丰度为7.52%的6Li和元素丰度为92.48%的7Li,二者之间有着较大的相对质量差(16.7%),使得地质过程中产生强烈的锂同位素平衡分馏,已观察到的自然界不同地质储库间的锂同位素分馏可高达8‰[136]。近年来,随着新一代多接收电感耦合等离子体质谱仪(MC-ICP-MS)、激光多接收电感耦合等离子体质谱仪(LA-MC-ICP-MS)、以及二次离子质谱仪(SIMS)的发展,使得锂同位素的测试技术有了飞跃性的突破,分馏机制得到更深入的研究,锂同位素逐渐成为一个良好的地球化学示踪工具[137-138]。锂同位素作为一种新兴的“非传统稳定同位素”,已应用在示踪流体来源[139]、陨石研究[140]、洋壳热液活动[141]、壳幔作用等过程的研究[142-147]

国内外学者针对花岗伟晶岩型锂矿开展了一些锂同位素分馏机理研究,包括平衡分馏、扩散动力分馏、混合或瑞利分馏等研究。锂同位素在花岗伟晶岩体系中的分馏作用取决于矿物、熔体、含水流体等多个富锂同位素相态中的交换机制,而地壳的深熔作用、封闭岩浆热液系统中的水岩反应以及高温条件下的结晶分异都不会产生有意义的锂同位素分馏[92, 148-150],因此,对锂同位素的研究可用来解决岩浆源区性质方面的问题,但对于形成伟晶岩的流体与花岗原岩是否一致方面还存在较大争论[108, 150-151]。花岗岩是在低温贫水条件下由地壳物质熔融形成,其中分离结晶、气相出溶以及缓慢冷却等过程都可形成显著的锂同位素分馏[152-153]。刘丽君等[154]在对我国新发现的超大型锂辉石矿床甲基卡新三号脉的研究中发现,锂同位素可以用作找矿的“示踪剂”。这是由于δ7Li在含矿伟晶岩、不含矿伟晶岩以及围岩之间具有较大差异(见图8),且在误差允许范围内,伟晶岩与二云母花岗岩的锂同位素组成相一致,证明了二者在成因上具有内在联系[155]。侯江龙等[156]进一步对甲基卡锂矿的锂同位素组成开展了研究,结果显示甲基卡二云母花岗岩的δ7Li值低于世界花岗岩的δ7Li值(见图9)。研究还显示矿区的δ7Li值基本与Li、Rb、Ga、SiO2以及εNd(t)等含量无关,说明δ7Li值不受岩浆结晶分异和围岩蚀变作用的影响,且岩体锂同位素能够指示形成时的源区特征。这与MAGNA等[147]对不同时代的伟晶岩体的锂同位素研究一致,并为伟晶岩的成矿流体来源于二云母花岗岩提供了证据。FAN等[157]报道了对西昆仑白龙山锂矿床的研究成果;通过对该矿床的贫锂和富锂伟晶岩开展主微量和锂同位素研究,发现贫锂和富锂伟晶岩是花岗岩岩浆演化晚期熔流体分离所形成,贫锂伟晶岩富集7Li,富锂伟晶岩相对富集6Li,超临界流体出溶对稀有金属矿化起着重要作用。该研究结论与前人对甲基卡地区伟晶岩型锂矿的锂同位素研究结果相印证,进一步证明了西昆仑与松潘-甘孜锂成矿带之间存在着密切联系。

尽管锂同位素应用于花岗伟晶岩型锂矿床方面的发展和研究还不够成熟,但不同类型多阶段矿体的锂同位素组合可用以区分锂矿母岩成因类型,且可以对锂、铍、铷、铯、铌、钽等稀有金属找矿有一定的指示意义。锂本身作为能源金属又是流体循环过程中的指示剂,对伟晶岩型锂矿床的研究意义重大,特别是在含锂伟晶岩矿床中,锂同位素可作为直接指标进行成因示踪,显示出其未来在伟晶岩矿床研究中更为突出的应用前景[137, 146]

图8  甲基卡新三号矿脉δ7Li值变化折线图[154]

Fig. 8  δ7Li line chart of the X03 ore vein of Jiajika orefield[154]

图9  花岗岩和伟晶岩中锂同位素分布[109, 147, 154, 156, 158-160]

Fig. 9  Li isotopic compositions of different granites and pegmatites[109, 147, 154, 156, 158-160]

4.2  对我国勘探开发建议

1) 进一步摸清楚国内和国外的锂资源储量情况,关注世界各国锂矿勘探项目的进展情况,把握前沿动向,在锂资源潜力大的地区有重点地部署找矿工作。锂虽然不是急缺矿种,但随着锂广泛应用于新能源产业,未雨绸缪是必要的,应以国际视野来考虑锂矿的找矿与开发。

2) 花岗伟晶岩型锂矿床具有多构造背景、多成矿时代的特点,所以对具体矿床来说,需要综合勘探,进一步拓展思路。花岗伟晶岩型锂矿在各个大陆上都有发现,无论是在古老的克拉通内,还是在较年轻的造山带,这些都应该作为找矿方向。

3) 比起其他结晶岩,伟晶岩相对有着更小的岩体规模,更为复杂多样的类型与形态,也就是说伟晶岩之间除了矿物成分上的不同,在矿物大小、结构等方面也会出现多样性。因此,对于花岗伟晶岩型锂矿,很难建立一个统一有效的理论模式,需要考虑不同矿集区的实际地质背景,针对实际情况具体分析,对相似的地质情况进行总结分析,才能不断取得突破。

5  结论

锂作为新兴产业最重要的矿产资源之一,各国对锂的需求增长旺盛。花岗伟晶岩型锂矿由于其分布广品位高,带动了全球的勘查热潮,也取得了重大进展。通过本次研究,可以得出以下结论:

1) 花岗伟晶岩型锂矿品位高、资源量大、采选冶技术成熟,尽管锂是稀有金属,但花岗伟晶岩型锂矿床在全球分布广泛,是锂矿储量和产量的主要类型。

2) 在时空分布方面,花岗伟晶岩型锂矿的成矿时代跨度很大,产出的时代可古老至太古宙,又可年轻至新生代;成矿构造环境从稳定的地台区到活跃的造山带均有。

3) 在成矿规律方面,花岗伟晶岩型锂矿床一般以中高压、中温成矿流体成矿为主,并具有低盐度的特征;花岗伟晶岩中的锂元素来源具有多样性,传统观点认为花岗岩浆的结晶分异富集是锂元素的主要来源,而最新的研究表明也可从沉积岩中继承锂元素。

4) 研究锂含量和锂同位素的组成特征不仅可以划分不同类型的锂矿床,还可以反映花岗伟晶岩型锂矿形成时的源区性质,且对花岗伟晶岩型锂矿的找矿工作具有重要意义。

5) 不同地区的花岗伟晶岩型锂矿床均表现出了特殊性,在找矿过程中应综合利用各种技术,寻找最有效的勘查技术手段,因地制宜,拓展找矿思路。

REFERENCES

[1] 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产—— 国际动向与思考[J]. 矿床地质, 2019, 38(4): 689-698.

MAO Jing-wen, YANG Zong-xi, XIE Gui-qing, et al. Critical minerals: International trends and thinking[J]. Miner al Deposits, 2019, 38(4): 689-698.

[2] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209.

WANG Deng-hong. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209.

[3] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111.

ZHAI Ming-guo, WU Fu-yuan, HU Rui-zhong, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111.

[4] SOVACOOL B K, ALI S H, BAZILIAN M, et al. Sustainable minerals and metals for a low-carbon future[J]. Science, 2020, 367(6473): 30-33.

[5] CHOUBEY P K, KIM M, SRIVASTAVA R R, et al. Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: From mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137.

[6] GOURCEROL B, GLOAGUEN E, MELLETON J, et al. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny[J]. Ore Geology Reviews, 2019, 109: 494-519.

[7] 李劲风, 宁 红, 刘丹阳, 等. Al-Cu-Li系铝锂合金的合金化与微合金化[J]. 中国有色金属学报, 2021, 31(2): 258-279.

LI Jing-feng, NING Hong, LIU Dan-yang, et al. Alloying and micro-alloying in Al-Cu-Li series alloys[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 258-279.

[8] VIKSTROM H, DAVIDSSON S, HOOK M. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110: 252-266.

[9] THOMAS R, DAVIDSON P, BEURLEN H. Tantalite-(Mn) from the Borborema Pegmatite Province, Northeastern Brazil: Conditions of formation and melt- and fluid-inclusion constraints on experimental studies[J]. Mineralium Deposita, 2011, 46(7): 749-759.

[10] LINNEN R L, VAN LICHTERVELDE M, CERNY P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280.

[11] SHAW R A, GOODENOUGH K M, ROBERTS N M W, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281: 338-362.

[12] 刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2): 263-278.

LIU Li-jun, WANG Deng-hong, Liu Xi-fang, et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2): 263-278.

[13] 杜双龙, 赖延清, 贾 明, 等. 基于电化学模型的锂空气电池仿真[J]. 中国有色金属学报, 2018, 28(6): 1143-1150.

DU Shuang-long, LAI Yan-qing, JIA Ming, et al. Simulation for lithium air batteries based on electrochemical model[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(6): 1143-1150.

[14] U.S. Geological Survey. Mineral Commodity Summaries 2021[EB/OL]. Reston, VA: U.S. Geological Survey, 2021: 98-99. https://doi.org/10.3133/mcs2021.

[15] 杨卉芃, 柳 林, 丁国峰. 全球锂矿资源现状及发展趋 势[J]. 矿产保护与利用, 2019, 39(5): 26-40.

YANG Hui-peng, LIU Lin, DING Guo-feng. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 26-40.

[16] KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources: relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69.

[17] 李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2269-2283.

LI Jian-kang, LIU Xi-fang, WANG Deng-hong. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 2014, 88(12): 2269-2283.

[18] 蔡艳龙, 李建武. 全球锂资源开发利用形势分析及启示[J]. 地球学报, 2017, 38(1): 25-29.

CAI Yan-long, LI Jian-wu. The analysis and enlightenment of exploitation situation of global lithium resources[J]. Acta Geoscientica Sinica, 2017, 38(1): 25-29.

[19] 于 沨, 王登红, 于 扬, 等. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 2019, 38(3): 354-364.

YU Feng, WANG Deng-hong, YU Yang, et al. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 2019, 38(3): 354-364.

[20] 周 平, 唐金荣, 张 涛. 全球锂资源供需前景与对策建议[J]. 地质通报, 2014, 33(10): 1532-1538.

ZHOU Ping, TANG Jin-rong, ZHANG Tao. Supply and demand prospect of global lithium resources and some suggestions[J]. Geological Bulletin of China, 2014, 33(10): 1532-1538.

[21] 王学求, 刘汉粮, 王 玮, 等. 中国锂矿地球化学背景与空间分布:远景区预测[J]. 地球学报, 2020, 41(6): 797-806.

WANG Xue-qiu, LIU Hang-lang, WANG Wei, et al. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects[J]. Acta Geoscientica Sinica, 2020, 41(6): 797-806.

[22] 刘冬福, 唐忠阳, 何利华, 等. 盐湖提锂膜堆电解槽流体水力学和数值模拟[J]. 中国有色金属学报, 2019, 29(2): 388-395.

LIU Dong-fu, TANG Zhong-yang, HE Li-hua, et al. Fluid hydraulics and numerical simulation on membrane electrolyzer for lithium extraction from salt lake brine[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(2): 388-395.

[23] 王登红, 刘丽君, 代鸿章, 等. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向[J]. 地球科学, 2017, 42(12): 2243-2257.

WANG Deng-hong, LIU Li-jun, DAI Hong-zhang, et al. Discussion on particularity and prospecting direction of large and super-large spodumene deposits[J]. Earth Science, 2017, 42(12): 2243-2257.

[24] BENSON T R, COBLE M A, RYTUBA J J, et al. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in Caldera Basins[J]. Nature Communications, 2017, 8: 270.

[25] WANG He, GAO Hao, ZHANG Xiao-yu, et al. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun Orogenic Belt, NW China[J]. Lithos, 2020, 360/361: 105449.

[26] 刘丽君, 王登红, 高娟琴, 等. 国外锂矿找矿的新突破(2017—2018年) 及对我国关键矿产勘查的启示[J]. 地质学报, 2019, 93(6): 1479-1488.

LIU Li-jun, WANG Deng-hong, GAO Juan-qin, et al. Breakthroughs of lithium exploration progress (2017-2018) and its significance to China’s strategic key mineral exploration[J]. Acta Geologica Sinica, 2019, 93(6): 1479-1488.

[27] MANETA V, BAKER D R. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites: A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada[J]. Journal of Geochemical Exploration, 2019, 205: 106336.

[28] PICKLES C A, MARZOUGHI O. Thermodynamic modelling of spodumene decrepitation[J]. Mineral Processing and Extractive Metallurgy, 2020. https://doi.org/10.1080/ 25726641.2020.1827675.

[29] 唐国凡, 吴盛先. 四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告[R]. 西昌: 四川省地质矿产局攀西地质大队, 1984: 1-24.

TANG Guo-fan, WU Sheng-xian. Geological study report of Jiajika granite pegmatite type lithium deposits in Kangfing, Sichuan [R]. Xichang: Panxi Geological Brigade of Sichuan Provincial Bureau of Geology and Mineral Resources, 1984: 1-24.

[30] 王 芳. 锂矿资源研究[D]. 北京: 中国地质大学(北京), 2020: 10-27.

WANG Fang. Research on lithium mineral resources[D]. Beijing: China University of Geosciences (Beijing), 2020: 10-27.

[31] 王 核, 李 沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6): 1053-1062.

WANG He, LI Pei, MA Hua-dong, et al. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 2017, 41(6): 1053-1062.

[32] SIMMONS W B, FALSTER A U, FREEMAN G. The Plumbago North Pegmatite, Maine, USA: A new potential lithium resource[J]. Mineralium Deposita, 2020, 55(7): 1505-1510.

[33] Mining Technology. Pilgangoora lithium-tantalum project, Pilbara[EB/OL]. 2019. https://www.mining-technology.com/ projects/ pilgangoora-lithium-tantalum-project-pilbara/.

[34] HOLMES J S, GRIGSON J L. Pilgangoora lithium-tantalum project: Deposit geology and new constraints on rare-metal pegmatite genesis[J]. ASEG Extended Abstracts, 2019, 2019(1): 1-6.

[35] Mt Cattlin-Galaxy Resources—A mature operation with stable production of a high-quality lithium concentrate[EB/OL]. [2021-10-09]. https://gxy.com/mt- cattlin-2/.

[36] Dakota Minerals. Lynas find lithium project update[EB/OL]. [2021-10-09]. http://www.aspecthuntley.com.au/asxdata/ 20160314/pdf/01721928.pdf.

[37] 杨岳清, 王登红, 刘善宝, 等. 四川甲基卡两类锂辉石矿体共存机制及其找矿意义[J]. 地质学报, 2020, 94(1): 287-302.

YANG Yue-qing, WANG Deng-hong, LIU Shan-bao, et al. The co-occurrence mechanism of two types of spodumene ore bodies and their prospecting significance in Jiajikan, Sichuan Province[J]. Acta Geologica Sinica, 2020, 94(1): 287-302.

[38] 杨富全, 张忠利, 王 蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42(6): 1010-1026.

YANG Fu-quan, ZHANG Zhong-li, WANG Rui, et al. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang[J]. Geotectonica et Metallogenia, 2018, 42(6): 1010-1026.

[39] 彭 杰, 邹 林. 四川可尔因地区锂矿床构造环境及外围找矿前景分析[J]. 世界有色金属, 2021(4): 50-51.

PENG Jie, ZOU Lin. Prospecting prospects in the Periphery of Keeryin Area, Sichuan[J]. World Nonferrous Metals, 2021(4): 50-51.

[40] 李兴杰, 李建康, 刘永超, 等. 川西扎乌龙花岗伟晶岩型稀有金属矿床白云母花岗岩岩石地球化学特征[J]. 地质论评, 2018, 64(4): 1005-1016.

LI Xing-jie, LI Jian-kang, LIU Yong-chao, et al. Geochemical features of muscovite granite in the Zhawulong granite pegmatite type rare metal deposit, Western Sichuan[J]. Geological Review, 2018, 64(4): 1005-1016.

[41] 杨 荣, 郝雪峰, 彭 宇, 等. 扎乌龙锂矿床地质地球物理综合研究[J]. 矿床地质, 2021, 40(4): 842-856.

YANG Rong, HAO Xue-feng, PENG Yu, et al. A comprehensive study on geology and geophysics of Zhawulong lithium deposit[J]. Mineral Deposits, 2021, 40(4): 842-856.

[42] 徐云峰, 秦宇龙, 王显锋, 等. 四川容须卡伟晶岩型锂多金属矿床地球化学特征及成矿地质条件[J]. 中国地质调查, 2019, 6(1): 34-40.

XU Yun-feng, QIN Yu-long, WANG Xian-feng, et al. Geochemical characteristics and metallogenic geological conditions of pegmatite type lithium polymetallic ore in Rongxuka, Sichuan Province[J]. Geological Survey of China, 2019, 6(1): 34-40.

[43] 编委会. 中国矿床发现史·新疆卷[M]. 1996: 50-67.

Editorial Committee. Discovery history of mineral deposits in China: Xinjiang volume[M]. [S. l.][s. n.], 1996: 50-67.

[44] 杜晓飞, 王 威, 张雅芳, 等. 新疆锂矿资源分布、矿床类型及找矿方向[J]. 新疆有色金属, 2020, 43(6): 1-4.

DU Xiao-fei, WANG Wei, ZHANG Ya-fang, et al. Distribution, deposit types and prospecting direction of lithium resources, Xinjiang[J]. Xinjiang Nonferrous Metals, 2020, 43(6): 1-4.

[45] 刘向阳. 河南省卢氏县蔡家沟锂矿核查区资源储量核查报告[R]. 商丘:河南省地质矿产勘查开发局第四地质探矿队. 2010.

LIU Xiang-yang. Verification report on lithium resources in Caijiagou area, Lushi County, Henan Province[R]. Shangqiu: The Fourth Geological Prospecting Team of Geology and Mineral Exploration Bureau of Henan Province. 2010.

[46] 李 鹏, 刘 翔, 李建康, 等. 湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 2019, 93(6): 1374-1391.

LI Peng, LIU Xiang, LI Jian-kang, et al. Petrographic and geochemical characteristics of Renli-Chuanziyuan No.5 pegmatite, NE Hunan, and its metallogenic age[J]. Acta Geologica Sinica, 2019, 93(6): 1374-1391.

[47] 费光春, 杨 峥, 杨继忆, 等. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定: 来自LA-MC-ICP-MS锡石U-Pb定年的证据[J]. 地质学报, 2020, 94(3): 836-849.

FEI Guang-chun, YANG Zheng, YANG Ji-yi, et al. New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province, evidence from cassiterite LA-MC-ICP-MS U-Pb dating[J]. Acta Geologica Sinica, 2020, 94(3): 836-849.

[48] ROSSOVSKIY L N, CHMYREV V M. Distribution patterns of rare-metal pegmatites in the Hindu Kush (Afghanistan)[J]. International Geology Review, 1977, 19(5): 511-520.

[49] 施俊法, 李友枝, 金庆花. 世界矿情: 亚洲卷[M]. 北京: 地质出版社, 2006: 1-497.

SHI Jun-fa, LI You-zhi, JIN Qing-hua. World mineral situation: Asia volume[M]. Beijing: Geology Publishing House, 2006: 1-497.

[50] British Geological Survey[EB/OL]. [2021-10-10]. https:// www.bgs.ac.uk/afghanMineals/docs/RareMetals_A4.pdf.

[51] KEITH EVANS R. An abundance of lithium[J]. Santiago: World Lithium, 2008, 1: 1-17.

[52] GORDILLO C E, SCHREYER W, WERDING G, et al. Lithium in Na Be-cordierites from El Penón, Sierra De Córdoba, Argentina[J]. Contributions to Mineralogy and Petrology, 1985, 90(1): 93-100.

[53] INC N L. How to profit from the booming lithium markets, available[EB/OL]. [2021-10-10]. https://money.usnews.com/ investing/investing-101/articles/how-to-invest-in-lithium-stocks.

[54] Rock Tech Receives Results of Initial Leach Test From[EB/OL]. [2021-10-10]. https://www.globenewswire. com/en/news-release/2019/06/25/1873670/0/en/Rock-Tech-Receives-Results-of-Initial-Leach-Test-from-Georgia-Lake-Lithium-Project.html.

[55] LASMANIS R. Lithium resources in the Yellowknife Area, Northwest Territories, Canada[J]. Energy, 1978, 3(3): 399-407.

[56] MUNSON G A, CLARKE F F. Mining and concentrating spodumene in the Black Hills, South Dakota[J]. AIME Trans, 1955, 202: 1041-1045.

[57] Manono Project-AVZ Minerals Limited[EB/OL]. [2021-08-06]. https://avzminerals.com.au/ manono-mine.

[58] Mining Technology-Birimian to Sell Mali’s Bougouni Lithium Project[EB/OL]. [2021-10-17]. https://www.mining- technology.com/news/newsbirimian-to-sell-bougouni-lithium-project-5709235/.

[59] 侯江龙, 王登红. 伟晶岩型锂矿成矿构造背景研究[J]. 地质论评, 2016, 62(z1): 385-386.

HOU Jiang-long, WANG Deng-hong. The study of metallogenic tectonic background of pegmatite lithium deposits[J]. Geological Review, 2016, 62(z1): 385-386.

[60] 涂其军, 李建康, 王 刚, 等. 中国西部主要伟晶岩型锂辉石矿床成矿作用对比及找矿前景[J]. 中国地质调查, 2019, 6(6): 35-47.

TU Qi-jun, LI Jian-kang, WANG Gang, et al. Mineralization comparisons of the major pegmatite type spodumene deposits and their prospecting potential in West China[J]. Geological Survey of China, 2019, 6(6): 35-47.

[61] 王登红, 刘丽君, 侯江龙, 等. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 2017, 24(5): 1-7.

WANG Deng-hong, LIU Li-jun, HOU Jiang-long, et al. A preliminary review of the application of “Five levels+ Basement” model for Jiajika-style rare metal deposits[J]. Earth Science Frontiers, 2017, 24(5): 1-7.

[62] 王盘喜, 朱黎宽, 刘 璐, 等. 河南官坡花岗伟晶岩地质与地球化学特征[J]. 中国地质调查, 2017, 4(6): 40-49.

WANG Pan-xi, ZHU Li-kuan, LIU Lu, et al. Geological and geochemical characteristics of granitic pegmatite in Guanpo, Henan Province[J]. Geological Survey of China, 2017, 4(6): 40-49.

[63] 张 杰, 张彦锋, 田晓敏, 等. 河南省卢氏县蔡家花岗伟晶岩型锂矿地质特征及矿床成因分析[J]. 地质与勘探, 2021, 57(3): 497-506.

ZHANG Jie, ZHANG Yan-feng, TIAN Xiao-min, et al. Geological characteristics and genesis of the Caijia granitic pegmatite-type lithium deposit in Lushi County, Henan Province[J]. Geology and Exploration, 2021, 57(3): 497-506.

[64] YAN Qing-gao, LI Jian-kang, LI Xiang-jie, et al. Source of the Zhawulong granitic pegmatite-type lithium deposit in the Songpan-Ganzê orogenic belt, Western Sichuan, China: Constrants from Sr-Nd-Hf isotopes and petrochemistry[J]. Lithos, 2020, 378/379: 105828.

[65] 王秋舒, 元春华, 许 虹. 全球锂矿资源分布与潜力分 析[J]. 中国矿业, 2015, 24(2): 10-17.

WANG Qiu-shu, YUAN Chun-hua, XU Hong. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine, 2015, 24(2): 10-17.

[66] CERNY P. Petrogenesis of granitic pegmatites[M]//Short Course Handbook, Volume 8: Granitic Pegmatites in Science and Industry. Winnipeg, Manitoba: The Mineralogical Association of Canada, 1982: 405-462.

[67] LONDON D. Pegmatites: The Canadian mineralogist special publication 10[M]. Quebec, Canada: The Mineralogical Association of Canada , 2008, 94(5): 862-862.

[68] RODA-ROBLES E, PESQUERA A, GIL-CRESPO P, et al. From granite to highly evolved pegmatite: A case study of the Pinilla De Fermoselle Granite–Pegmatite System (Zamora, Spain)[J]. Lithos, 2012, 153: 192-207.

[69] HULSBOSCH N, HERTOGEN J, DEWAELE S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba Area Pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the Regional Zonation of Pegmatite Groups[J]. Geochimica Et Cosmochimica Acta, 2014, 132: 349-374.

[70] 王 伟, 刘图强, 袁蔺平, 等. 川西九龙黄牛坪铍矿床地质特征及找矿潜力[J]. 中国地质调查, 2019, 6(6): 72-78.

WANG Wei, LIU Tu-qiang, YUAN Lin-ping, et al. Geological characteristics and prospecting potential of Huangniuping beryllium deposit in Jiulong of West Sichuan[J]. Geological Survey of China, 2019, 6(6): 72-78.

[71] SALAKJANI N K, SINGH P, NIKOLOSKI A N, et al. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 1: Conventional heating[J]. Minerals Engineering, 2016, 98: 71-79.

[72] SALAKJANI N K, SINGH P, NIKOLOSKI A N. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 1: Conventional heating[J]. Minerals Engineering, 2017, 100: 191-199.

[73] TALENS PEIRO L, VILLALBA MENDEZ G, AYRES R U. Lithium: Sources, production, uses, and recovery outlook[J]. JOM, 2013, 65(8): 986-996.

[74] 丁建刚, 杨成栋, 杨富全, 等. 新疆阿尔泰别也萨麻斯稀有金属矿床含矿伟晶岩与花岗岩围岩成因关系[J]. 地球科学与环境学报, 2020, 42(1): 71-85.

DING Jian-gang, YANG Cheng-dong, YANG Fu-quan, et al. Genetic relationship between ore-bearing pegmatite and the surrounding granite of Bieyesamasi rare metal deposit in Altay of Xinjiang, China[J]. Journal of Earth Sciences and Environment, 2020, 42(1): 71-85.

[75] 孙文礼, 马叶情, 宋庆伟. 中国花岗伟晶岩型锂矿特征和研究进展[J]. 地质与勘探, 2021, 57(3): 478-496.

SUN Wen-li, MA Ye-qing, SONG Qing-wei. Characteristics and research progress of granitic pegmatite type lithium deposits in China[J]. Geology and Exploration, 2021, 57(3): 478-496.

[76] 李贤芳, 田世洪, 王登红, 等. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系:U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 2020, 39(2): 273-304.

LI Xian-fang, TIAN Shi-hong, WANG Deng-hong, et al. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry[J]. Mineral Deposits, 2020, 39(2): 273-304.

[77] BRADLEY D C, MCCAULEY A D, STILLINGS L L. Mineral-deposit model for lithium-cesium-tantalum pegmatites[R]. [S. l.]: US Geological Survey, 2017.

[78] 王登红, 李建康, 付小方. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 2005, 34(6): 541-547.

WANG Deng-hong, LI Jian-kang, FU Xiao-fang. 40Ar/39Ar dating for the Jiajika pegmatite-type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 2005, 34(6): 541-547.

[79] 李建康, 王登红, 付小方. 川西可尔因伟晶岩型稀有金属矿床的40Ar/39Ar年代及其构造意义[J]. 地质学报, 2006, 80(6): 843-848.

LI Jian-kang, WANG Deng-hong, FU Xiao-fang. 40Ar/39Ar Ages of the Ke’eryin pegmatite type rare metal deposit, western Sichuan, and its tectonic Significances[J]. Acta Geologica Sinica, 2006, 80(6): 843-848.

[80] 岳相元, 张 贻, 周 雄, 等. 川西可尔因矿集区稀有金属矿床成矿规律与找矿方向[J]. 矿床地质, 2019, 38(4): 867-876.

YUE Xiang-yuan, ZHANG Yi, ZHOU Xiong, et al. Metallogenic regularity and prospecting direction of rare metal deposits in Keeryin ore concentration area, western Sichuan[J]. Mineral Deposits, 2019, 38(4): 867-876.

[81] 邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006: 34-51.

ZOU Tian-ren, LI Qing-chang. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006: 34-51.

[82] 陈郑辉, 王登红, 龚羽飞, 等. 新疆哈密镜儿泉伟晶岩型稀有金属矿床40Ar-39Ar年龄及其地质意义[J]. 矿床地质, 2006, 25(4): 470.

CHEN Zheng-hui, WANG Deng-hong, GONG Yu-fei, et al. 40Ar-39Ar isotope dating of muscovite from Jingerquan pegmatite rare metal deposit in Hami, Xinjiang, and its geological significance[J]. Mineral Deposits, 2006, 25(4): 470-476.

[83] 陈西京. 深处岩浆分异与某地花岗伟晶岩的形成[J]. 地球化学, 1976, 5(3): 213-229.

CHEN Xi-jing. Deep-seated magmatic differentiation and the formation of granite pegmatites in a certain district,China[J]. Geochimica, 1976, 5(3): 213-229.

[84] LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.

[85] 熊 欣, 李建康, 王登红, 等. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 2019, 38(2): 241-253.

XIONG Xin, LI Jian-kang, WANG Deng-hong, et al. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 2019, 38(2): 241-253.

[86] SOWERBY J R, KEPPLER H. The effect of fluorine, boron and excess sodium on the critical curve in the Albite-H2O system[J]. Contributions to Mineralogy and Petrology, 2002, 143(1): 32-37.

[87] 李建康. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京), 2006.

LI Jian-kang. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China[D]. Beijing: China University of Geosciences, 2006.

[88] 李建康, 王登红, 张德会, 等. 川西甲基卡伟晶岩型矿床中含硅酸盐子矿物包裹体的发现及其意义[J]. 矿床地质, 2006, 25(S1): 131-134.

LI Jian-kang, WANG Deng-hong, ZHANG De-hui, et al. The discovery of silicate daughter mineral-bearing inclusions in the Jiajika pegmatite deposit, western Sichuan, and its significance[J]. Mineral Deposits, 2006, 25(S1): 131-134.

[89] 李建康, 王登红, 张德会, 等. 四川甲基卡伟晶岩型锂多金属矿床成矿流体来源研究[J]. 岩石矿物学杂志, 2006, 25(1): 45-52.

LI Jian-kang, WANG Deng-hong, ZHANG De-hui, et al. The source of ore-forming fluid in Jiajika pegmatite type lithium polymetallic deposit, Sichuan Province[J]. Acta Petrologica et Mineralogica, 2006, 25(1): 45-52.

[90] LI Jian-kang, CHOU I-ming, YUAN Shun-da, et al. Homogenization temperature measurements in hydrothermal diamond-anvil cell for melt and fluid inclusions from the Jiajika Pegmatite Deposit, China[C]//AGU Fall Meeting Abstracts. [S. l.]: [s. l.], 2009: V43-V2234B.

[91] LI Jian-kang, WANG Deng-hong CHEN Yu-chuan. The ore-forming mechanism of the Jiajika pegmatite-type rare metal deposit in Western Sichuan Province: Evidence from isotope dating[J]. Acta Geologica Sinica, 2013, 87(1): 91-101.

[92] LI Jie, HUANG Xiao-long, WEI Gang-jian, et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites[J]. Geochimica Et Cosmochimica Acta, 2018, 240: 64-79.

[93] HUANG Tao, FU Xiao-fang, GE Liang-quan, et al. The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach[J]. Ore Geology Reviews, 2020, 124: 103557.

[94] 王 臻, 陈振宇, 李建康, 等. 川西甲基卡308号脉的矿物学特征及其岩浆-热液演化示踪[J/OL]. 地质学报, 2021. [2021-06-17]. https://doi.org/10.19762/j.cnki.dizhixuebao. 2021219.

WANG Zhen, CHEN Zhen-yu, LI Jian-kang, et al. Mineralogical characteristics and their constraints on the magmatic-hydrothermal evolution for Jiajika No.308 pegmatite, western Sichuan, China[J/OL]. Acta Geologica Sinica, 2021[2021-06-17]. https://doi.org/10.19762/j.cnki. dizhixuebao.2021219.

[95] 付小方, 袁蔺平, 王登红, 等. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J]. 矿床地质, 2015, 34(6): 1172-1186.

FU Xiao-fang, YUAN Lin-ping, WANG Deng-hong, et al. Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan[J]. Mineral Deposits, 2015, 34(6): 1172-1186.

[96] 许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106.

XU Zhi-qin, WANG Ru-cheng, ZHAO Zhong-bao, et al. On the structural backgrounds of the large-scale “hard-rock type” lithium ore belts in China[J]. Acta Geologica Sinica, 2018, 92(6): 1091-1106.

[97] 李 鹏, 李建康, 张立平, 等. 幕阜山西南缘黄柏山稀有金属伟晶岩密集区的发现及意义[J]. 矿床地质, 2019, 38(5): 1069-1076.

LI Peng, LI Jian-kang, ZHANG Li-ping, et al. Discovery and significance of Huangbaishan rare metal pegmatite concentration area on southern margin of Mufushan[J]. Mineral Deposits, 2019, 38(5): 1069-1076.

[98] 周芳春, 刘 翔, 李建康, 等. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型[J]. 大地构造与成矿学, 2019, 43(1): 77-91.

ZHOU Fang-chun, LIU Xiang, LI Jian-kang, et al. Metallogenic characteristics and prospecting direction of Renli super-large rare metal deposit in Hunan province, China[J]. Geotectonica et Metallogenia, 2019, 43(1): 77-91.

[99] 翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 3版. 北京: 地质出版社, 2011: 27-52.

ZHAI Yu-sheng, YAO Shu-zhen, CAI Ke-qin. Mineral deposits[M]. 3rd ed. Beijing: Geological Publishing House, 2011: 27-52.

[100] CLARK J R, WILLIAMS-JONES A E. Analogues of epithermal gold-silver deposition in geothermal well scales[J]. Nature, 1990, 346(6285): 644-645.

[101] 张如柏. 我国某地区锂辉石伟晶岩形成特征的初步探讨[J]. 地球化学, 1974, 3(3): 182-191.

ZHANG Ru-bai. Preliminary study of a spodumene- pegmatite in china[J]. Geochimica, 1974, 3(3): 182-191.

[102] 卢焕章. 流体不混溶性和流体包裹体[J]. 岩石学报, 2011, 27(5): 1253-1261.

LU Huan-zhang. Fluids immiscibility and fluid inclusions[J]. Acta Petrologica Sinica, 2011, 27(5): 1253-1261.

[103] 李名则, 秦宇龙, 李 峥, 等. 川西甲基卡二云母花岗岩与伟晶岩脉地球化学特征及其地质意义[J]. 岩石矿物学杂志, 2018, 37(3): 366-378.

LI Ming-ze, QIN Yu-long, LI Zheng, et al. Geochemical characteristics of two-mica granite and granite pegmatite in Jiajika area, western Sichuan, and their geological implications[J]. Acta Petrologica et Mineralogica, 2018, 37(3): 366-378.

[104] KEPPLER H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J]. Contributions to Mineralogy and Petrology, 1993, 114(4): 479-488.

[105] THOMAS R, FORSTER H J, RICKERS K, et al. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study[J]. Contributions to Mineralogy and Petrology, 2005, 148(5): 582-601.

[106] 张德会. 关于成矿作用地球化学研究的几个问题[J]. 地质通报, 2005, 24(10/11): 885-891.

ZHANG De-hui. Some problems on the geochemistry of ore-forming processes[J]. Geological Bulletin of China, 2005, 24(10/11): 885-891.

[107] 李建康, 张德会, 王登红, 等. 富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J]. 地质论评, 2008, 54(2): 175-183.

LI Jian-kang, ZHANG De-hui, WANG Deng-hong, et al. Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny[J]. Geological Review, 2008, 54(2): 175-183.

[108] DEVEAUD S, MILLOT R, VILLAROS A. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chemical Geology, 2015, 411: 97-111.

[109] TENG F Z, RUDNICK R L, MCDONOUGH W F, et al. Lithium isotopic composition and concentration of the deep continental crust[J]. Chemical Geology, 2008, 255(1/2): 47-59.

[110] MARTIN R F, DE VITO C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. The Canadian Mineralogist, 2005, 43(6): 2027-2048.

[111] XU Zhi-qiang, LIANG Bin, GENG Yan, et al. Extraction of soils above concealed lithium deposits for rare metal exploration in Jiajika area: A pilot study[J]. Applied Geochemistry, 2019, 107: 142-151.

[112] 徐兴旺, 洪 涛, 李 杭, 等. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 2020, 36(12): 3572-3592.

XU Xing-wang, HONG Tao, LI Hang, et al. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh[J]. Acta Petrologica Sinica, 2020, 36(12): 3572-3592.

[113] SIMMONS W B S, WEBBER K L. Pegmatite genesis: State of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438.

[114] LONDON D, MORGAN G B. The pegmatite puzzle[J]. Elements, 2012, 8(4): 263-268.

[115] LONDON D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184/185/186/187: 74-104.

[116] 付小方, 黄 韬, 郝雪峰, 等. 综合找矿模型在甲基卡隐伏区稀有锂金属找矿中的应用[J]. 矿床地质, 2019, 38(4): 751-770.

FU Xiao-fang, HUANG Tao, HAO Xue-feng, et al. Application of comprehensive prospecting model to rare lithium metal exploration in Jiajika concealed ore deposit[J]. Mineral Deposits, 2019, 38(4): 751-770.

[117] PARTINGTON G A, MCNAUGHTON N J, WILLIAMS I S. A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia[J]. Economic Geology, 1995, 90(3): 616-635.

[118] SWEETAPPLE M T, COLLINS P L. Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia[J]. Economic Geology, 2002, 97(4): 873-895.

[119] SWEETAPPLE M T. A review of the setting and internal characteristics of lithium pegmatite systems of the Archaean North Pilbara and Yilgarn Cratons, Western Australia[C]// Granites 2017 Conference Benalla Victoria, Ext Abstr Austr Inst Geosci Bull, 2017, 65: 113-117.

[120] RAIMBAULT L, CUNEY M, AZENCOTT C, et al. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology, 1995, 90(3): 548-576.

[121] CERNY P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied Geochemistry, 1992, 7(5): 393-416.

[122] CERNY P, LONDON D, NOVAK M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4): 289-294.

[123] 王登红, 王成辉, 孙 艳, 等. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 2017, 4(5): 1-8.

WANG Deng-hong, WANG Cheng-hui, SUN Yan, et al. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. Geological Survey of China, 2017, 4(5): 1-8.

[124] GODFREY L V, CHAN L H, ALONSO R N, et al. The role of climate in the accumulation of lithium-rich brine in the Central Andes[J]. Applied Geochemistry, 2013, 38: 92-102.

[125] ORBERGER B, ROJAS W, MILLOT R, et al. Stable isotopes (Li, O, H) combined with brine chemistry: Powerful tracers for Li origins in Salar Deposits from the Puna Region, Argentina[J]. Procedia Earth and Planetary Science, 2015, 13: 307-311.

[126] 殷 聃. 四川省九龙县打枪沟锂铍矿床地质特征及找矿潜力研究[D]. 成都: 成都理工大学, 2017: 52-62.

YIN Dan. A study on geological characteristics and prospecting potential for lithium and beryllium deposit of Daqianggou in Jiulong County of Sichuan Province[D]. Chengdu: Chengdu University of Technology, 2017: 52-62.

[127] MORADI M, BASIRI S, KANANIAN A, et al. Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other eo-data, a case study in Central Alborz, Iran[J]. Earth Science Informatics, 2015, 8(1): 197-205.

[128] PERROTTA M M, SOUZA FILHO C R, LEITE C A S. Spectral mapping of pegmatitic intrusions related to lithium mineralizations, industrial gems and minerals in the Jequitinhonha Valley region (MG) from ASTER images[C]// The 12nd Brazilian Symposium of Remote Sensor. Goiania, Brazil: [s.n.], 2005: 1855-1862. (in Portuguese).

[129] MENDES D, PERROTTA M M, COSTA M A C, et al. Spectral mapping for the identification of spectral lithium mineral signatures in ASTER images (NE/MG)[C]//The 18th Brazilian Remote Sensor Symposium. Santos, Brazil: [s.n.], 2017: 5273-5280 (in Portuguese).

[130] CARDOSO-FERNANDES J, TEODORO A C, LIMA A. Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76: 10-25.

[131] 姚佛军, 徐兴旺, 杨建民, 等. 戈壁浅覆盖区花岗岩中锂铍伟晶岩的Aster遥感识别技术—— 以新疆镜儿泉地区为例[J]. 矿床地质, 2020, 39(4): 686-696.

YAO Fo-jun, XU Xing-wang, YANG Jian-min, et al. A technology for identifying Li-Be pegmatite using Aster remote sensing data in granite of Gobi shallow-covered area: A case study of recognition and prediction of Li-Be pegmatite in Jingerquan, Xinjiang[J]. Mineral Deposits, 2020, 39(4): 686-696.

[132] 肖瑞卿, 赵 春, 付小方, 等. 四川甘孜甲基卡锂矿地质-地球化学特征和找矿标志[J]. 物探与化探, 2018, 42(6): 1156-1165.

XIAO Rui-qing, ZHAO Chun, FU Xiao-fang, et al. A geological-geochemical prospecting model of the Jiajika lithium deposit int Garze, Sichuan[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1156-1165.

[133] 涂其军, 韩 琼, 李 平, 等. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 2019, 93(11): 2862-2873.

TU Qi-jun, HAN Qiong, LI Ping, et al. Basic characteristics and exploration progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J]. Acta Geologica Sinica, 2019, 93(11): 2862-2873.

[134] 杨 荣, 郝雪峰, 王登红, 等. 四川甲基卡锂矿田伟晶岩脉的地球物理探测效果—— 以新三号脉(X03)为例[J]. 矿床地质, 2020, 39(1): 111-125.

YANG Rong, HAO Xue-feng, WANG Deng-hong, et al. Effect of geophysical exploration on the pegmatite vein in Jiajika lithium orefield, Sichuan Province: A case study of X03 vein[J]. Mineral Deposits, 2020, 39(1): 111-125.

[135] VIGIER N, GISLASON S R, BURTON K W, et al. The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland[J]. Earth and Planetary Science Letters, 2009, 287(3-4): 434-441.

[136] TOMASCAK P B, MAGNA T, DOHMEN R. Cosmochemistry of lithium[M]//Advances in Lithium Isotope Geochemistry. Cham, Switzerland: Springer International Publishing, 2016: 19-46.

[137] 李贤芳, 张玉洁, 田世洪. 锂同位素在伟晶岩矿床成因研究中的应用[J]. 中国地质, 2019, 46(2): 419-429.

LI Xian-fang, ZHANG Yu-jie, TIAN Shi-hong. Application of lithium isotopes in genetic study of pegmatite deposits[J]. Geology in China, 2019, 46(2): 419-429.

[138] 张俊文, 孟俊伦, 赵志琦, 等. 多接收电感耦合等离子质谱法准确测定天然地质样品中的锂同位素组成[J]. 分析化学, 2019, 47(3): 415-422.

ZHANG Jun-wen, MENG Jun-lun, ZHAO Zhi-qi, et al. Accurate determination of lithium isotopic compositions in geological samples by multi-collector inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 415-422.

[139] BOTTOMLEY D J, KATZ A, CHAN L H, et al. The origin and evolution of Canadian Shield brines: Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton[J]. Chemical Geology, 1999, 155(3/4): 295-320.

[140] CHAUSSIDON M, ROBERT F. 7Li/6Li and 11B/10B variations in chondrules from the semarkona unequilibrated chondrite[J]. Earth and Planetary Science Letters, 1998, 164(3/4): 577-589.

[141] VILS F, TONARINI S, KALT A, et al. Boron, lithium and strontium isotopes as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209[J]. Earth and Planetary Science Letters, 2009, 286(3/4): 414-425.

[142] 田世洪, 胡文洁, 侯增谦, 等. 拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因: Li同位素制约[J]. 矿床地质, 2012, 31(4): 791-812.

TIAN Shi-hong, HU Wen-jie, HOU Zeng-qian, et al. Enriched mantle source and petrogenesis of Miocene Sailipu ultrapotassic rocks in western Lhasa block, Tibetan Plateau: Lithium isotopic constraints[J]. Mineral Deposits, 2012, 31(4): 791-812.

[143] YANG Dan, HOU Zeng-qian, ZHAO Yue, et al. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system[J]. Scientific Reports, 2015, 5: 13812.

[144] DELLINGER M, BOUCHEZ J, GAILLARDET J, et al. Tracing weathering regimes using the lithium isotope composition of detrital sediments[J]. Geology, 2017, 45(5): 411-414.

[145] WEI Ying-chun, HE Wen-bo, QIN Guo-hong, et al. Lithium enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China[J]. Minerals, 2020, 10(6): 521.

[146] 陆一敢, 肖益林, 王洋洋, 等. Li同位素在矿床学中的应用: 现状与展望[J/OL]. 地球科学, 2021[2021-04-19]. http://kns.cnki.net/kcms/detail/42.1874.p.20210301.1525.016. html.

LU Yi-gan, XIAO Yi-lin, WANG Yang-yang, et al. Exploration of Li isotopes in application of ore deposits[J/OL]. Earth Science, 2021[2021-04-19]. http:// kns.cnki.net/kcms/detail/42.1874.p.20210301.1525.016.html.

[147] MAGNA T, NOVAK M, CEMPIREK J, et al. Crystallographic control on lithium isotope fractionation in archean to Cenozoic lithium-cesium-tantalum pegmatites[J]. Geology, 2016, 44(8): 655-658.

[148] WENGER M, ARMBRUSTER T. Crystal chemistry of lithium: Oxygen coordination and bonding[J]. European Journal of Mineralogy, 1991, 3(2): 387-400.

[149] TOMASCAK P B, TERA F, HELZ R T, et al. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910.

[150] TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota[J]. American Mineralogist, 2006, 91(10): 1488-1498.

[151] BARNES E M, WEIS D, GROAT L A. Significant Li isotope fractionation in geochemically evolved rare element- bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 2012, 132/133: 21-36.

[152] TENG Fang-zhen, MCDONOUGH W F, RUDNICK R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 701-710.

[153] ZHANG Hui-juan, TIAN Shi-hong, WANG Deng-hong, et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 2021, 134: 104139.

[154] 刘丽君, 王登红, 侯可军, 等. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘, 2017, 24(5): 167-171.

LIU Li-jun, WANG Deng-hong, HOU Ke-jun, et al. Application of lithium isotope to Jiajika new No. 3 pegmatite lithium polymetallic vein in Sichuan[J]. Earth Science Frontiers, 2017, 24(5): 167-171.

[155] 苏嫒娜, 田世洪, 侯增谦, 等. 锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用[J]. 现代地质, 2011, 25(2): 236-242.

SU Ai-na, TIAN Shi-hong, HOU Zeng-qian, et al. Lithium isotope and its application to Jiajika pegmatite type lithium polymetallic deposit in Sichuan[J]. Geoscience, 2011, 25(2): 236-242.

[156] 侯江龙, 李建康, 张玉洁, 等. 四川甲基卡锂矿床花岗岩体 Li 同位素组成及其对稀有金属成矿的制约[J]. 地球科学, 2018, 43(6): 2042-2054.

HOU Jiang-long, LI Jian-kang, ZHANG Yu-jie, et al. Li isotopic composition and its constrains on rare metal mineralization of Jiajika two-mica granite, Sichuan Province[J]. Earth Science, 2018, 43(6): 2042-2054.

[157] FAN Jing-jing, TANG Gong-jian, WEI Gang-jian, et al. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos, 2020, 352/353: 105236.

[158] TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Lithium isotopic composition and concentration of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4167-4178.

[159] TENG F Z, RUDNICK R L, MCDONOUGH W F, et al. Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust[J]. Chemical Geology, 2009, 262(3/4): 370-379.

[160] TOMASCAK P B. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 153-195.

Research progress and prospect of granitic pegmatite-type lithium deposits

HU Xiao-jun1, 2, LI Huan1, 2

(1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;

2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Changsha 410083, China)

Abstract: Granitic pegmatite-type lithium deposits are distributed extensively around the world, and as a significant source of lithium resources, they have aroused the exploration interest of all countries all over the world. This paper summarized metallogenic characteristics and the trends of the major granitic pegmatite-type lithium deposits at home and abroad, and the main findings were as follows: 1) Global granitic pegmatite-type lithium resources are abundant and widely distributed, which can be used as a very potential mining target; 2) The metallogenic tectonic environment can be stable platform or active orogenic belt; 3) The metallogenic epoch can be old to the Archean or new to the Cenozoic, but in China the major ore-forming stage is in the Yanshanian period; 4) The mineralization of lithium cyclical, and lithium in granitic pegmatites may inherited from sedimentary rocks. Most of the ore-forming fluids formed under the conditions of medium-high pressure, medium temperature and low salinity. In addition, lithium isotopes have become a good tracer to study various complex metallogenic processes, and can provide evidence for the magmatic source of granites and pegmatites. A series of studies have been carried out on the lithium isotopes fractionation mechanism of granitic pegmatite-type lithium deposits. It’s proposed that the main genesis of the granitic pegmatite-type lithium deposits may be the crystallization of granite or the partial melting of the crust. The characteristics of Li isotopes can be used to distinguish the genetic types of the parent rock of the mineralization, which has an indicating significance for the prospecting direction and shows a critical prospect. The granite pegmatite type lithium deposits in different areas show great differences in ore body morphology, remote sensing, geochemistry and geophysics characteristics, so it’s urgent for us to seek for the most effective prospecting technology based on the conditions, and expand the prospecting methods.

Key words: lithium resource; metallogenic epoch; spodumene; Li isotopes; prospecting direction

Foundation item: Project(2018YFC0603902) supported by the National Key Research and Development Program of China

Received date: 2021-08-09; Accepted date: 2021-10-22

Corresponding author: LI Huan; Tel: +86-18827415616; E-mail: lihuan@csu.edu.cn

(编辑  何学锋)

基金项目:国家重点研发计划资助项目(2018YFC0603902)

收稿日期:2021-08-09;修订日期:2021-10-22

通信作者:李  欢,教授,博士;电话:18827415616;E-mail:lihuan@csu.edu.cn

摘  要:花岗伟晶岩型锂矿作为锂矿的重要来源,全球分布十分广泛,引起了世界各国的勘查兴趣。本文通过对国内外的重要的花岗伟晶岩型锂矿矿床地质特征和研究进展进行总结归纳,获得以下认识:1) 花岗伟晶岩型锂矿分布广泛且资源量大,是锂资源的主要开发对象;2) 不管是稳定的地台,还是活跃的造山带,都可能是花岗伟晶岩型锂矿的成矿构造环境;3) 矿床从太古宙到新生代都有发育,但中国的花岗伟晶岩型锂矿成矿主要集中在燕山期;4) 锂成矿具有循环性的特征,花岗伟晶岩中的锂也可由沉积岩提供;一般以中高压、中温成矿流体为主,并具有低盐度的特征。此外,锂同位素近年来已成为一个锂成矿过程的良好示踪工具,岩体锂同位素组成可以反映花岗岩和伟晶岩在形成时的源区性质。国内外学者对伟晶岩型锂矿的锂同位素分馏机制开展了一系列研究,普遍认为花岗伟晶岩型锂矿与花岗岩岩浆结晶分异作用、地壳部分熔融密切相关。且锂同位素的特征可指示锂矿母岩成因类型,对于找矿方向的厘定有一定的指示意义,显示出重要的研究与应用前景。不同地区的花岗伟晶岩型锂矿床在矿体形态、遥感、地球化学、地球物理等特征方面表现出较大差异性,找矿过程中应寻找最有效的勘查技术手段,因地制宜,拓展找矿思路。