中国有色金属学报

文章编号:1004-0609(2013)05-1351-05

Fe3+掺杂Li4Ti5O12的结构及电化学性能

宋刘斌1, 2,李新海1,王志兴1,郭华军1,肖忠良2,唐朝辉1

(1. 中南大学 冶金科学与工程学院,长沙 410083;

2. 长沙理工大学 化学与生物工程学院,长沙 410004)

摘要:采用高温固相法合成Li4FexTi5-xO12(x=0.025, 0.1, 0.2)负极材料。通过X射线衍射、扫描电镜、充放电性能测试等对掺杂Fe3+的Li4Ti5O12材料的组成、结构、形貌进行表征,并对其电化学性能进行研究。结果表明,所合成的材料具有良好的尖晶石结构,无杂相。适当Fe3+掺杂能细化材料,提高材料的电子导电性,使材料的循环性能得到改善。Li4Fe0.025Ti4.975O12的充电容量最佳,0.1C倍率下首次充电比容量达到162.5 mA·h/g,循环性能较好。

关键词:

锂离子电池Li4Ti5O12Fe3+掺杂负极材料

中图分类号:TM912.9                     文献标志码:A

Structure and electrochemical performance of Fe3+-doped Li4Ti5O12

SONG Liu-bin1, 2, LI Xin-hai1, WANG Zhi-xing1, GUO Hua-jun1, XIAO Zhong-liang2, TANG Zhao-hui1

(1. School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China;

2. School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410004, China)

Abstract: Li4FexTi5-xO12(x=0.025, 0.1, 0.2) anode materials was synthesized by solid-state reaction. Its component, structure, morphology and electrochemical properties were characterized by XRD, SEM and charge-discharge tests. The results show that the synthesized material is pure spinel phase. The particle size of samples with Fe3+-doping decreases in a certain extent, and appropriate amount of Fe3+-doping in Li4Ti5O12 leads to obvious increase in initial and cycling stability, which are ascribe to the smaller particle and better electronic conduction. Li4Fe0.025Ti4.975O12 sample has higher charge capacities than other samples. The initial charge specific capacity of Li4Fe0.025Ti4.975O12 is 162.5 mA·h/g at 0.1 C, showing that it has good cycling behavior.

Key words: lithium ion batteries; Li4Ti5O12; Fe3+-doping; anode materials

尖晶石型Li4Ti5O12因锂离子脱嵌过程中结构稳定、安全性能优异,逐渐取代商品化锂离子电池负极材料,成为长循环寿命电池的理想的负极材料之一[1-3]。立方结构型Li4Ti5O12中75% Li占据在8a位,其余Li占据在16d位,因此可以写成Li8a[Ti5/3Li1/3]16dO4,锂嵌入时材料发生两相转变电位为1.5V[4]。尽管Li4Ti5O12/Li电位太低以致导致其不能成为一种优异的正极材料,它可以作为负极材料,与LiCoO2或LiMn2O4组成电压为2.5 V的电池装置,虽牺牲了一定的电压和能量密度,但是可以大大提高材料的安全性能[5]

为了使电池达到高功率,正负极材料应该具备良好的电子导电性和Li+传导性。在充电嵌锂过程中生成的Li7Ti5O12具有Ti4+/Ti3+混合价态,电子导电性很好,能够实现电子快速转移到外电路;但在放电过程生成的Li4Ti5O12会作为绝缘体限制材料的倍率性能[6-7]。目前,研究人员主要通过包覆导电性物质[8-9]和掺杂金属阳离子[7, 10-14]等途径提高Li4Ti5O12的电子导电性。Mg2+、Al3+、Ag+、Br-、Zr4+等掺杂对Li4Ti5O12材料的电化学性能有一定程度的改善,但仍存在不足。在所有报道中,研究人员主要用锐钛型TiO2、锂源和掺杂元素按化学计量比在800~1 000 ℃内烧结合成改性Li4Ti5O12材料。因为通常认为锐钛型TiO2是Li+嵌入的活性主体,而金红石型TiO2几乎不能嵌入Li+[15]。熊训辉等[16]首次采用来源广、成本低的金红石型TiO2为原料研究了Al3+掺杂对Li4Ti5O12材料电化学性能的影响,他们发现Al3+掺杂导致材料颗粒粗大,影响了材料的综合电化学性能。本文作者以金红石型TiO2为原料,Fe3+为掺杂元素,详细研究了Fe3+对材料的结构、形貌以及电化学性能的影响。

1  实验

1.1  样品的制备

按Li4FexTi5-xO12(x=0,0.025,0.1,0.2)化学计量比(Li盐过量5%以弥补高温下的挥发)分别称取Li2CO3、Al2O3和金红石型TiO2,以无水乙醇作为分散剂,室温下高速球磨4 h,混合物于80 ℃烘干后置入程序控温管式炉,在空气气氛中以10(°)/min加热至850 ℃,保温12 h后随炉冷却研磨后备用。

1.2  电池的制作及电化学性能测试

采用涂膜法制备电极,以N-甲基吡咯烷酮为溶剂,将原料按照质量比m(Li4Ti5O12):m(AB): m(PVDF)= 80:10:10的比例混合成正极浆液,再将浆液涂在预处理过的铝箔上,在真空干燥箱中于80 ℃下干燥12 h,压片后得到正极片。在Ar保护的手套箱中,以金属锂片为对电极和参比电极,1 mol/L LiPF的EC:DMC: EMC(质量比1:l:1)溶液为电解液,聚丙烯微孔膜(Celgard 2300)为隔膜,组装成CR2025型扣式电池。

1.3  表征测试

采用日本理学D/max-VAX射线衍射仪(XRD)和JEOL公司生产的JSM-5600LV型扫描电子显微镜观察材料形貌。充放电性能均采用上述组装的CR2025型扣式电池进行测试。用电池测试系统(LAND CT2001A,武汉金诺)在室温下(25 ℃)进行充放电性能测试,电压范围为1~2.5 V。采用上海辰华CHI660A电化学工作站进行交流阻抗及循环伏安测试。其中循环伏安扫描电压区间为2.5~4.5 V,扫描速率0.1 mV;交流阻抗测试频率范围为0.01 Hz~100 kHz,振幅为5 mV。

2  结果与讨论

2.1  X射线衍射分析

图1所示为以金红石型TiO2为原料合成的纯相Li4Ti5O12以及不同掺铁量样品的XRD谱。由图11(a)可见,所有谱线均与Li4Ti5O12的标准图谱(49-0207)基本吻合,没有明显的杂质峰,说明Fe3+全部进入Li4Ti5O12的晶格,形成良好的固溶体,这与熊训辉等[16]所报道的掺杂会导致Li4Ti5O12样品中出现TiO2杂质不一致。当掺杂量x=0.2时,XRD谱线中出现Fe2O3杂质峰,说明掺杂量过大,掺杂元素不能全部进入晶格。图1 (b)所示为不同掺铁量合成样品的(111)峰放大图。掺杂量为x=0.025和x=0.1样品的(111)峰强度有所增强,说明Fe3+增加了材料的结晶度。并且该掺杂样品的(111)峰逐渐向2θ角度增大方向偏移,可知掺杂样品的晶胞常数逐渐减小,这与经GSAS精修程序拟合计算得到的各样品的晶胞常数(见表1)一致,这是因为低掺杂量时,Fe3+全部进入晶格,部分Fe取代在8a位的Li+,部分取代16d位的Ti4+ [17-18],但Fe3+的离子半径(0.055 nm)比Li+(0.076 nm)和Ti4+(0.61 nm)均要小,所以铁掺杂样品晶胞常数都会变小。当x=0.2时,材料的晶胞参数有所增大,可能是掺杂量过多,Fe3+未完全进入晶胞,导致晶胞常数变大。

图1  不同掺铁量样品Li4FexTi5-xO12的XRD谱

Fig. 1  XRD patterns of Li4FexTi5-xO12 doped with different amounts of Fe

表1  样品 Li4FexTi5-xO12(x=0, 0.025, 0.1, 0.2)的晶胞常数

Table 1  Lattice parameters of Li4FexTi5-xO12(x=0, 0.025, 0.1, 0.2) samples

2.2  形貌分析

图2所示为纯相Li4Ti5O12和不同掺杂量样品的SEM像。综合比较可看出:低掺杂量(x=0.025)可以一定程度细化材料的颗粒;当掺杂量过大时,样品均一的形貌被破坏,Li4Fe0.2Ti4.8O12样品颗粒已熔合形成致密的固体。ZHAO等[11]报道掺铝导致Li4Ti5O12材料熔点有所降低,本研究与掺铝有所不同,掺铁对形貌的影响还需进一步研究。

2.3  电化学性能测试

图3所示为纯相及掺杂样品的首次充放电曲线和循环性能图。从图3(a)可以看出,纯相样品0.1 C倍率下首次充电比容量为161.9 mA·h/g,与锐钛型TiO2为钛源合成材料的性能相当[19-20],说明对于高温固相反应而言,钛源TiO2的形态对合成材料的性能影响不大,这与熊训辉等[16]报道的一致。掺杂对Li4Ti5O12性能影响很大,当掺杂量为x=0.025时,材料的0.1C首次充电比容量为162.5 mA·h/g,与纯相Li4Ti5O12样品的接近;样品Li4FexTi5-xO12(x=0.1, 0.2)的充电比容量均不同下降。其原因是适量的掺杂细化了材料的颗粒,首次充放电及倍率性能(见图3(b))都得到改善,但是过多的Fe3+阻碍了Li+扩散,使材料的电化学性能恶化。从材料的循环性能可以看出,Li4Ti5O12材料具有良好的循环性能。纯相Li4Ti5O12样品在1C下循环50次后容量为115.8 mA·h/g,而掺杂量x=0.025的样品在1C下循环50次容量达到124.5 mA·h/g,保持率为92.9%。其原因可能为掺杂细化了材料颗粒,缩短了锂离子扩散路径,并且适当掺杂提高了材料的导电性,但当掺杂量过大时会恶化材料的性能。

图2  不同掺铁量样品Li4FexTi5-xO12的SEM像

Fig. 2  SEM images of Li4FexTi5-xO12 doped with different amount of Fe

图3  Li4FexTi5-xO12样品的首次充放电曲线和循环性能

Fig. 3  Initial charge-discharge curves (a) and cycling performance (b) of Li4FexTi5-xO12

对装配的扣式实验电池进行循环伏安测试的结果如图4所示。从图4可明显观察到两对氧化还原峰, 2.5~1.0 V间有一组很强的氧化还原峰且峰面积近似相等,即充放电容量近似相等,反映出这两种材料具有很高的库仑效率。但是氧化还原峰对应的电压差Δφ都达到0.15 V,说明极化较严重,主要是因为采用两电极体系,欧姆阻抗较大,扣式实验电池的测试结果普遍都有这种现象。对掺杂样品Li4Fe0.25Ti4.975O12而言,在同一扫描速度下材料的峰电流明显增强,峰面积明显增大,进而预示了掺杂后材料具有更高的循环容量,与上述讨论结果一致。

图5所示为纯相Li4Ti5O12及掺杂样品Li4Fe0.025Ti4.975O12的交流阻抗谱图。图5中两条谱线均由一个半圆和一条直线组成,高频区的半圆反映的是电荷转移过程的阻抗以及电极和电解液间的界面容抗,在低频区的直线反映的则是锂离子在固态活性物质中扩散引起的Warburg阻抗[21],其特点是斜率越大,阻抗值越小[22]。由图5可知,掺杂样品Li4Fe0.025Ti4.975O12在高频区的半圆形的直径比纯相样品的直径明显减小,说明界面反应阻抗有所降低。从图5还可以看出,在整个频率区均只有一个半圆,表明Li4Ti5O12电极表面并没有形成钝化膜,这与Li4Ti5O12电极的嵌锂电位(1.55 V,vs Li/Li+)较高有关,此结果与文献[23]报道一致。测试结果表明,Li4Fe0.25Ti4.975O12电极拥有比Li4Ti5O12电极更出色的导电性能,多孔特征明显,虽然容抗较大,但并不影响其具有优良的倍率充放电性能。

图4  纯相Li4Ti5O12与Li4Fe0.025Ti4.975O12的循环伏安曲线

Fig. 4  Cyclic voltammagrams of Li4Ti5O12 and Li4Fe0.025- Ti4.975 O12 electrode at scan rate of 0.1 mV/s

图5  纯相Li4Ti5O12与Li4Fe0.025Ti4.975O12的交流阻抗图

Fig. 5  AC impedance spectroscopies of Li4Ti5O12 and Li4Fe0.025Ti4.975O12

3  结论

1) 采用高温固相法合成了Fe3+掺杂尖晶石型钛酸锂负极材料。在掺杂量x≤0.20的范围内,所合成的材料具有良好的尖晶石结构,且未发现杂相峰。

2) Fe3+掺杂不会改变钛酸锂材料尖晶石结构,并且适当的Fe可以细化材料颗粒,提高材料的电子导电性,缩短锂离子扩散距离,改善材料的循环性能。

3) Li4Fe0.025Ti4.975O12在实验条件下具有最优的电化学性能,在0.1C倍率下首次充电比容量为162.5 mA·h/g。纯相Li4Ti5O12样品在1C下循环50次后容量为115.8 mA·h/g,而掺杂量x=0.025的样品在1C下循环50次后容量为124.5 mA·h/g,保持率为92.9%。

REFERENCES

[1] OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li4Ti5O12 for rechargeable lithium cells[J]. Journal of the Electrochemical Society, 1995, 142(5): 1431-1435.

[2] ZAGHIB K, SIMONEAU M, ARMAND M, GAUTHIER M. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Source, 1999, 81: 300-305.

[3] GUERFI A, SEVIGNY S, LAGACE M, HOVINGTON P, KINOSHITA K, ZAGHIB K. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators[J]. Journal of Power Sources, 2003, 119/121: 88-94.

[4] COLBOW K M, DAHN J R, HAERING R R. Structure and electrochemistry of the spinel oxides LiTi2O4 and LiTiO4[J]. Journal of Power Sources, 1989, 26: 397-402.

[5] JANSEN A N, KAHAIAN A J, KEPLER K D, NELSON P A, AMINE K, DEES D W, VISSERS D R, THACKERAY M M. Development of a high-power lithium-ion battery[J]. Journal of Power Sources, 1999, 81/82: 902-905.

[6] OUYANG C Y, ZHONG Z Y, LEI M S. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel[J]. Electrochemistry Communication, 2007, 9(5): 1107-1112.

[7] CHEN C H, VAUGHEY J T, JANSEN A N, DEES D W, KAHAIAN A J, GOACHER T, THACKERAY M M. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0≤x≤1) for lithium batteries[J]. Journal of the Electrochemical Society, 2001, 148(1): 102-104.

[8] HE Ze-qiang, XIONG Li-zhi, CHEN Shang, WU Xian-ming, LIU Wen-ping, HUANG Ke-long. In situ polymerization preparation and characterization of Li4Ti5O12 polyaniline anode material[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1): 262-266.

[9] DOMINKO R, GABERSCEK M, BELE M. MIHAILOVIC D. Carbon nano-coatings on active materials for Li-ion batteries[J]. Journal of the European Ceramic Society, 2007, 27: 909-913.

[10] JI S Z, ZHANG J Y, WANG W W, HUANG Y. Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery[J]. Journal of Materials Chemistry and Physics, 2010, 123: 510-515.

[11] ZHAO H L, Li Y, ZHU Z M, LIN J, TIAN Z H, Wang R L. Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anode material for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53: 7079-7083.

[12] HUANG S H, WEN Z Y, ZHU X J, Gu Z H. Preparation and cycling performance of Ag and doped Li4Ti5O12[J]. Electrochemistry Communications, 2004, 6: 1093-1097.

[13] QI Y L, HUANG Y D, JIA D Z, BAO S J, GUO Z P. Preparation and characterization of novel spinel Li4Ti5O12-xBrx anode materials[J]. Electrochimica Acta, 2009, 54: 4772-4776.

[14] LI X, QU M Z, YU Z L. Structural and electrochemical performances of Li4Ti5-xZrxO12 as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2009, 487: 12-17.

[15] AMATUCCI G G, BDWAY F, PASQUIER A D, ZHENG T. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Eletrochemical Society, 2001, 148(8): 930-939.

[16] 熊训辉, 王志兴, 伍 凌, 李新海, 吴飞翔, 郭华军, 彭文杰. Al掺杂对Li4Ti5O12结构及性能的影响[J]. 中国有色金属学报, 2011, 21(9): 2146-2150.

XIONG X H, WANG Z X, WU L, LI X H, WU F X, GUO H J, PENG W J. Effect of Al-doping on structure and electrochemical performance of Li4Ti5O12[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(9): 2146-2150.

[17] ROBERTSON A D, TUKAMOTO H, IRVINEA J T S. Li1+xFe1-3xTi1+2xO4 (0.0≤x≤0.33) based spinels: Possible negative electrode materials for future Li-ion batteries[J]. Journal of the Electrochemical Society, 1999, 146(11): 3958-3962.

[18] REALE P, PANERO S, RONCI F, ROSSI A V, SCROSATI B. Iron-Substituted lithium titanium spinels: Structural and electrochemical characterization[J]. Chemistry Material, 2003, 15: 3437-3442.

[19] 姚经文, 吴 锋. 锂离子电池负极材料Li4Ti5O12的合成及电化学性能[J]. 功能材料, 2006, 37 (11): 1752-1754.

YAO Jing-wen, WU Feng. Preparation and characterization of Li4Ti5O12 anode material for lithium secondary batteries[J]. Journal of Functional Materials, 2006, 37 (11): 1752-1754.

[20] 阮艳莉, 唐致远, 彭庆文. 尖晶石Li4Ti5O12电池材料的合成与电化学性能研究[J]. 无机材料学报, 2006, 21(4): 873-879.

RUAN Yan-li, TANG Zhi-yuan, PENG Qing-wen. Synthesis and eletrochemical performance of spinel Li4Ti5O12 electrode material[J]. Journal of Inorganic Materials, 2006, 21(4): 873-879.

[21] 曹楚南, 张鉴清. 电化学阻抗谱导论[M].北京: 科学出版社, 2002: 20-36.

CAO Chu-nan, ZHANG Jian-qing. The introduction of AC impedance spectra[M]. Beijing: Science Press, 2002: 20-36.

[22] RAISTRICK I D, HO C, HUGGINS R A. Lithium ion conduction in Li5A1O4, Li5GaO4 and Li6ZnO4[J]. Materials Research Bulletin, 1976, 11(8): 953-957.

[23] WANG G X, BRADHURST D H, DOU S X, LIU H K. Spinel Li4Ti5O12 as an anode material for lithium ion batteries[J]. Journal of Power Sources, 1999, 83: 156-161.

(编辑  何学锋)

基金项目:湖南省科技重大专项资助项目(2009FJ1002 & 2011FJ1005);湖南省科技计划项目(2011GK3119 & 2012FJ4123)

收稿日期:2012-09-12;修订日期:2012-12-18

通信作者:李新海,教授,博士;电话:13875976497;E-mail:liubinsong1981@126.com

[1] OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li4Ti5O12 for rechargeable lithium cells[J]. Journal of the Electrochemical Society, 1995, 142(5): 1431-1435.

[2] ZAGHIB K, SIMONEAU M, ARMAND M, GAUTHIER M. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Source, 1999, 81: 300-305.

[3] GUERFI A, SEVIGNY S, LAGACE M, HOVINGTON P, KINOSHITA K, ZAGHIB K. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators[J]. Journal of Power Sources, 2003, 119/121: 88-94.

[4] COLBOW K M, DAHN J R, HAERING R R. Structure and electrochemistry of the spinel oxides LiTi2O4 and LiTiO4[J]. Journal of Power Sources, 1989, 26: 397-402.

[5] JANSEN A N, KAHAIAN A J, KEPLER K D, NELSON P A, AMINE K, DEES D W, VISSERS D R, THACKERAY M M. Development of a high-power lithium-ion battery[J]. Journal of Power Sources, 1999, 81/82: 902-905.

[6] OUYANG C Y, ZHONG Z Y, LEI M S. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel[J]. Electrochemistry Communication, 2007, 9(5): 1107-1112.

[7] CHEN C H, VAUGHEY J T, JANSEN A N, DEES D W, KAHAIAN A J, GOACHER T, THACKERAY M M. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0≤x≤1) for lithium batteries[J]. Journal of the Electrochemical Society, 2001, 148(1): 102-104.

[8] HE Ze-qiang, XIONG Li-zhi, CHEN Shang, WU Xian-ming, LIU Wen-ping, HUANG Ke-long. In situ polymerization preparation and characterization of Li4Ti5O12 polyaniline anode material[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1): 262-266.

[9] DOMINKO R, GABERSCEK M, BELE M. MIHAILOVIC D. Carbon nano-coatings on active materials for Li-ion batteries[J]. Journal of the European Ceramic Society, 2007, 27: 909-913.

[10] JI S Z, ZHANG J Y, WANG W W, HUANG Y. Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery[J]. Journal of Materials Chemistry and Physics, 2010, 123: 510-515.

[11] ZHAO H L, Li Y, ZHU Z M, LIN J, TIAN Z H, Wang R L. Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anode material for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53: 7079-7083.

[12] HUANG S H, WEN Z Y, ZHU X J, Gu Z H. Preparation and cycling performance of Ag and doped Li4Ti5O12[J]. Electrochemistry Communications, 2004, 6: 1093-1097.

[13] QI Y L, HUANG Y D, JIA D Z, BAO S J, GUO Z P. Preparation and characterization of novel spinel Li4Ti5O12-xBrx anode materials[J]. Electrochimica Acta, 2009, 54: 4772-4776.

[14] LI X, QU M Z, YU Z L. Structural and electrochemical performances of Li4Ti5-xZrxO12 as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2009, 487: 12-17.

[15] AMATUCCI G G, BDWAY F, PASQUIER A D, ZHENG T. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Eletrochemical Society, 2001, 148(8): 930-939.

[16] 熊训辉, 王志兴, 伍 凌, 李新海, 吴飞翔, 郭华军, 彭文杰. Al掺杂对Li4Ti5O12结构及性能的影响[J]. 中国有色金属学报, 2011, 21(9): 2146-2150.

XIONG X H, WANG Z X, WU L, LI X H, WU F X, GUO H J, PENG W J. Effect of Al-doping on structure and electrochemical performance of Li4Ti5O12[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(9): 2146-2150.

[17] ROBERTSON A D, TUKAMOTO H, IRVINEA J T S. Li1+xFe1-3xTi1+2xO4 (0.0≤x≤0.33) based spinels: Possible negative electrode materials for future Li-ion batteries[J]. Journal of the Electrochemical Society, 1999, 146(11): 3958-3962.

[18] REALE P, PANERO S, RONCI F, ROSSI A V, SCROSATI B. Iron-Substituted lithium titanium spinels: Structural and electrochemical characterization[J]. Chemistry Material, 2003, 15: 3437-3442.

[19] 姚经文, 吴 锋. 锂离子电池负极材料Li4Ti5O12的合成及电化学性能[J]. 功能材料, 2006, 37 (11): 1752-1754.

YAO Jing-wen, WU Feng. Preparation and characterization of Li4Ti5O12 anode material for lithium secondary batteries[J]. Journal of Functional Materials, 2006, 37 (11): 1752-1754.

[20] 阮艳莉, 唐致远, 彭庆文. 尖晶石Li4Ti5O12电池材料的合成与电化学性能研究[J]. 无机材料学报, 2006, 21(4): 873-879.

RUAN Yan-li, TANG Zhi-yuan, PENG Qing-wen. Synthesis and eletrochemical performance of spinel Li4Ti5O12 electrode material[J]. Journal of Inorganic Materials, 2006, 21(4): 873-879.

[21] 曹楚南, 张鉴清. 电化学阻抗谱导论[M].北京: 科学出版社, 2002: 20-36.

CAO Chu-nan, ZHANG Jian-qing. The introduction of AC impedance spectra[M]. Beijing: Science Press, 2002: 20-36.

[22] RAISTRICK I D, HO C, HUGGINS R A. Lithium ion conduction in Li5A1O4, Li5GaO4 and Li6ZnO4[J]. Materials Research Bulletin, 1976, 11(8): 953-957.

[23] WANG G X, BRADHURST D H, DOU S X, LIU H K. Spinel Li4Ti5O12 as an anode material for lithium ion batteries[J]. Journal of Power Sources, 1999, 83: 156-161.