中南大学学报(自然科学版)

岩石极限分析非线性理论及其应用

杨 小 礼

(中南大学 土木建筑学院,湖南 长沙,410075)

摘 要:

摘  要:基于非线性Hoek–Brown破坏准则,对均质各向同性的岩石介质建立岩石极限分析非线性理论。根据非线性准则的切线方程,构造静力容许的应力场和机动容许的速度场,在整个应力场和速度场,切线方程的强度参数值保持不变,作用在单位面积的正应力、剪应力不变,但大小未知。在分析上限非线性时,根据切线方程,基于单刚块或多刚块破坏机理,计算外力的功率与内能耗散功率。当岩石在外荷载作用下发生破坏时,外力所做的功率与内能耗散功率相等,以此建立目标函数与约束方程。对目标函数与约束方程进行优化,以此确定切线方程的切点位置和最小能量耗散。在分析下限非线性时,根据切线方程,建立静力容许的应力场。应力场要满足平衡条件、应力边界条件、并不违反非线性破坏准则。根据平衡条件求出下限解与切点位置。应用结果表明,极限分析非线性理论是正确的。

关键词:

岩石极限分析Hoek–Brown破坏准则非线性理论

中图分类号:TU43         文献标识码:A         文章编号:1672-7207(2009)01-0225-05

Limit analysis with nonlinear failure criterion in

rock masses and its applications

2YANG Xiao-li

(School of Civil and Architectural Engineering, Central South University, Changsha 410075, China)

Abstract: Based on nonlinear Hoek-Brown failure criterion, nonlinear limit analysis theory was proposed. The new theory states that instead of the actual nonlinear Hoek-Brown failure criterion, one tangential line, the strength of which equals or exceeds that of the nonlinear failure criterion, was used to establish the kinematical velocity field and admissible stress field. In the two fields, the location of tangential point to the nonlinear failure criterion was unchangeable, and the normal stress and shear stress on unit area on failure surface were assumed to be constant. However, the values of stresses and location of tangency point were unspecified. Using the nonlinear Hoek-Brown failure criterion and upper bound theorem, external work rate and internal energy dissipation rate were calculated according to a single wedge failure mechanism or a multi-wedge failure mechanism. Due to external forces equal to internal energy dissipation rate along discontinuities in the mechanism, objective function and constraint equations were established. A classical optimization problem was formulated, and the optimum solution was obtained by a nonlinear sequential quadratic programming algorithm. When the geo-structures, such as rock slopes or rock foundations, collapse due to external loads, the energy dissipation was minimized to determine the location of tangency points. Using the nonlinear Hoek-Brown failure criterion and lower bound theorem, the established stress field should satisfy the equilibrium equation, stress boundary condition and nowhere violation to the nonlinear Hoek-Brown failure criterion. In order to verify the validity of the new theory, numerical results were presented and compared with the published solutions. From the comparisons, it is found that the present solutions are correct.

Key words: rock; limit analysis; Hoek-Brown failure criterion; nonlinear theory

在极限分析理论的基础上,如何根据非线性破坏准则,研究岩土结构物的承载力或稳定性问题是土木工程学科的前沿问题。Baker等[1]在变分原理的基础上,利用非线性破坏准则研究了边坡上的条形基础地基承载力,推导出地基承载力的微积分控制方程。由于该微积分方程的复杂性,Baker等没有给出相应的求解方法与数值结果。Zhang等[2]也在变分原理的基础上,采用“逆算法(Inverse method)”研究边坡在非线性破坏准则下的滑动面形状,并给出边坡在各种坡角下的稳定性系数。Collins等[3-4]提出了切线法。在无外荷载作用与无水压作用下,对于均质各向同行的岩土边坡,Chen[5]给出边坡的稳定性系数的定义。利用Chen[5]提出的线性Mohr-Coulomb破坏准则下的边坡稳定性系数,Collins等[3-4]给出坡在非线性破坏准则下的稳定性系数,其结果与Zhang等[2]的变分法结果一致。由于Collins等[3-4]需要利用Chen[5]提出的线性Mohr- Coulomb破坏准则下的边坡稳定性系数,而Chen[5]的线性破坏准则下的边坡稳定性系数只适用于无外荷载作用下的二维均质边坡。实际上,岩土边坡是复杂的,如层层分布、受其他外荷载作用、受孔隙水压力作用,使得Collins等[3-4]提出的切线法无法推广应用。该切线法的最大弊端在于:需要利用Chen[5]提出的线性Mohr-Coulomb破坏准则下的边坡稳定性系数,使得无法推广用于其他岩土结构物如挡土墙、地基承载力、隧道稳定性、地下工程等的分析。

1  岩石Hoek-Brown准则

在岩石工程中,Mohr-Coulomb破坏准则已经得到广泛应用。在主应力空间或正应力-剪应力空间,Mohr-Coulomb破坏准则的最大主应力和最小主应力呈线性关系。土体破坏时,粘聚力c和内摩擦角φ是已知的,由试验确定。

但是,众多实验结果表明,破坏时的最大主应力和最小主应力的关系是非线性关系,而线性关系是其中的特例。Hoek和Brown[6]根据前人大量岩石实验成果,总结出Hoek-Brown破坏准则。后来,Hoek 等进行了一系列的修正[7-13]。最新的修正破坏准则为:

从式(1)可看出,的关系为非线性关系,并且粘聚力和内摩擦角φ未知。在式(1)中,参数m1,n和s的确定很重要,Hoek等经过了多次修正,得出下列表达式:

式中:GSI是地质强度指标,其确定方法见文献[11];D为系数,在0.0~1.0之间变化,它反映岩石受扰动程度(Disturbance degree);mi为反映岩石类型的参数,由试验确定。Cai等[14]对Hoek-Brown破坏准则进一步完善,提出岩石的残余强度破坏准则,即:

在残余强度阶段,岩石结构已经破坏,因此,该岩石已经充分扰动,扰动系数D=0。残余地质强度指标的确定方法见文献[14]。

从式(1)与(5)可看出:岩石破坏时,粘聚力c和内摩擦角φ是未知的。根据非线性Hoek-Brown破坏准则,在坐标系中,建立如式(1)所示的切线方程,其截距ct的表达式为:

根据式(9)和非线性破坏准则,可确定。的表达式的推导过程见文献[15–20]。

岩石性质变化大,不仅不同地点的岩石性质差别很大,即使同一地点、同一层岩石,其岩石性质也随位置不同而变化,因此,岩石的破坏准则也是具有多样性。在岩石工程中,常用的非线性破坏准则为:

该破坏准则也称Power-Law非线性破坏准则。其中:c0为曲线与纵轴的截距;σt和m为岩石材料参数。当m=1时,式(12)变成线性Mohr-Coulomb破坏准则。Ucar[21]从理论上证明了岩石的Hoek-Brown破坏属于Power-Law非线性破坏准则类别。因此,无论是岩石破坏准则(1)式,还是岩石残余强度破坏准则式(5),它们都可以用式(10)来统一表示。

2  岩石极限分析非线性理论

目前,岩石边坡稳定性分析、岩石地基承载力计算都采用线性Mohr-Coulomb破坏准则,即计算时,抗剪强度指标C和φ已知。如Terzaghi所构建的岩石地基承载力公式、岩石边坡安全系数公式都建立在线性Mohr-Coulomb破坏准则的基础上。实际上,大量实验成果证实岩石破坏服从Hoek-Brown破坏准则,这是一条非线性破坏准则,抗剪强度指标C和φ未知。在C和φ未知的情况下,如何根据传统极限分析理论研究岩石地基承载力和岩石边坡稳定性,目前国内外没有一个公认可行的方法,是岩石工程界尚未解决的难题。一般来讲,Mises准则适合于破坏面是平面或圆弧形状的;Mohr-Coulomb准则适合于破坏面是平面或对数曲线的。若非线性准则被使用,则几乎不可能确定不连续破坏机理;即使这样的不连续破坏机理能够得到,也很难计算它的内能耗散。由于这些原因,在极限分析的解析或半解析解中几乎不用非线性破坏准则[22]

运用非线性Hoek-Brown破坏准则及其切线方程,在虚功原理的基础上,对均质各向同性的岩石介质建立如下岩石极限分析非线性理论。

a. 岩石非线性上限定理可描述为:以切线方程代替非线性破坏准则,建立机动容许的速度场,计算外力的功率与内能耗散功率,在整个单刚块或多刚块破坏机理中,切线方程的强度参数φt和ct保持不变,作用在单位面积的正应力和剪应力(σn, τ)不变,但其值未知。当岩石在外荷载作用下发生破坏时,外力所做的功率与内能耗散功率相等,以此建立目标函数与约束方程。对目标函数与约束方程进行优化,以此确定切线方程的切点位置和最小能量耗散,确定岩石地基承载力或岩石边坡稳定性。该理论也可推广到其他岩石工程如岩石隧道与地下工程中。

b. 岩石非线性下限定理可描述为:以切线方程代替非线性破坏准则,构造应力容许的静力平衡应力场。应力场要满足平衡条件、应力边界条件,其不违反非线性破坏准则。平衡应力场中的强度参数φt和ct保持不变,作用在单位面积的正应力和剪应力(σn, τ)不变,但其值未知。当岩石在外荷载作用下处于平衡状态时,在所有应力场中寻找能与最大外荷载相平衡的应力场。根据平衡条件,确定切线方程的切点位置和岩石结构物的稳定性。

在前人研究的基础上,所提出的岩石极限分析非线性理论的主要贡献在于:

a. Collins等[3-4]在根据非线性破坏准则研究边坡稳定性时,需要利用Chen[5]的边坡稳定性系数(Chen[5]的边坡稳定性系数是在线性Mohr-Coulomb破坏准则下获得的)。对于复杂的岩土边坡问题如岩体或土体层层分布、作用复杂的动荷载,此时,线性Mohr-Coulomb破坏准则下的稳定性系数难以获得,因此,Collins   等[3-4]的研究成果不易推广到解决复杂的岩土边坡问题,更不能推广到解决其他岩土问题。而作者提出的上述岩石极限分析非线性理论,不需要利用Chen[5]的线性边坡稳定性系数,可以计算复杂边坡的稳定性,也很容易推广到解决其他岩土问题,如非线性破坏准则下的挡土墙土压力计算,非线性破坏准则下的地基极限承载力计算,非线性破坏准则下的隧道稳定性计算,等等。

b. 本文提出的岩土极限分析非线性理论是建立在单一切线的基础上,即岩土的性质相同,切线的位置相同,切线的位置不受外界正应力的影响。即使含有多个破坏面,也无需建立多切线方程。

可见,作者提出的岩石非线性上限定理是Collins等[3-4]中切线法的改进、完善与发展。在极限分析理论的基础上,作者提出的岩石非线性上限定理和非线性下限定理为非线性破坏准则下的岩石极限分析提供了有效途径。下面根据非线性破坏准则,对上述2种理论进行分析和讨论。

3  应用研究

运用极限分析中非线性上限定理和非线性下限定理,研究边坡稳定性、挡土墙土压力和地基承载力问题。

3.1  在边坡稳定性方面的应用

根据非线性上限定理,计算出非线性破坏准则下的边坡稳定性系数,它与Zhang等[2]变分法结果一致,如表1所示,这说明本文提出的非线性极限分析理论的有效性和正确性[23]

表1  边坡稳定性系数比较

Table 1  Comparisons of stability factors

对不能抗拉竖直边坡,运用非线性上限定理计算其上限解;运用非线性下限定理计算其下限解,结果表明下限解与上限解相等[23],如表2所示。这也证明本文作者提出的非线性上限定理和非线性下限定理是正确的。但如何使上限解和下限解相等,这取决于速度场和静力场的建立。其实,在很多情况下,上限解和下限解不一定相等。但根据这2个解,可以知道真实解存在的范围,范围越小越好。

表2  不能抗拉竖直边坡的上、下限解

Table 2  Upper and lower solutions for a vertical slope

3.2  在挡土墙土压力方面的应用

根据非线性破坏准则,运用极限分析中的非线性上限定理计算其上限解;根据广义Rankine理论计算极限平衡解(极限平衡解从本质讲是下限解),结果发现下限解与上限解相等[24–26]。这也证明本文作者提出的非线性上限定理和非线性下限定理的有效性和正 确性。

将这一理论应用于岩石地基承载力方面,可计算出Hoek-Brown破坏准则下的岩石地基承载力[27]

4  结  论

a. 大量的岩石试验结果表明,岩石破坏服从Hoek-Brown破坏准则,该准则是非线性的。基于非线性破坏准则,在大量研究基础上,建立非线性上限定理和非线性下限定理。

b. 新的极限分析理论可用于解决岩石极限分析中破坏准则非线性引起的难题。

参考文献:

[1] Baker R, Frydman S. Upper bound limit analysis of soil with nonlinear failure criterion[J]. Soils and Foundations, 1983, 23(4): 34-42.

[2] Zhang X J, Chen W F. Stability analysis of slopes with general nonlinear failure criterion[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(1): 33–50.

[3] Collins I F, Gunn C I M, Pender M J, et al. Slope stability analyses for materials with a nonlinear failure envelope[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(5): 533–550.

[4] Drescher A, Christopoulos C. Limit analysis slope stability with nonlinear yield condition[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(3): 341–345.

[5] Chen W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier Science, 1975.

[6] Hoek E, Brown E T. Empirical strength criterion for rock masses[J]. Journal of Geotechnical Engineering Division, ASCE, 1980, 106(9): 1013–1035.

[7] Hoek E. Strength of jointed rock masses[J]. Geotechnique, 1983, 33(2): 187–223.

[8] Hoek E, Brown E T. The Hoek–Brown failure criterion update[C]//Rock Engineering for Underground Excavation: Proceeding of 15th Canadian Symposium. Toronto, 1988: 31–38.

[9] Hoek E. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 1990, 27(4): 227–229.

[10] Hoek E, Wood D, Shan S. A modified Hoek-Brown criterion for jointed rock masses[C]// Proceeding of Rock Characterization. Hudson J A. Symposium of International Society Rock Mechanics: Eurock 92. 1992: 209–213.

[11] Hoek E, Brown E T. Practical estimates the rock mass strength[J]. International Journal of Rock Mechanics and mining Sciences, 1997, 34(8): 1165–1186.

[12] Hoek E, Carranze-Torres C, Corkum B. Hoek-Brown failure criterion–2002 edition[C]//Proceedings of the North American Rock Mechanics Society Meeting. Toronto, 2002: 267–273.

[13] Hoek E. A brief history of the development of the Hoek-Brown failure criterion[EB/OL]. Http:// www. rocscience. com, 2004.

[14] Cai M, Kaiser P K, Tasaka Y, et al. Determination of residual strength of jointed rock masses using the GSI system[J]. International Journal of Rock Mechanics and mining Sciences, 2007, 44(2): 247–265.

[15] YANG Xiao-li. Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 948–953.

[16] YANG Xiao-li, ZOU Jin-feng. Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1146–1152.

[17] YANG Xiao-li, YIN Jian-hua. Linear Mohr-Coulomb strength parameters from the nonlinear Hoek–Brown rock masses[J]. International Journal of Non-linear Mechanics, 2006, 41(8): 1000–1005.

[18] YANG Xiao-li, YIN Jian-hua. Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4): 550–560.

[19] YANG Xiao-li, LI Liang, YIN Jian-hua. Seismic and static stability analysis of rock slopes by a kinematical approach[J]. Geotechnique, 2004, 54(8): 543–549.

[20] YANG Xiao-li, LI Liang, YIN Jian-hua. Stability analysis of rock slopes with a modified Hoek-Brown failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(2): 181–190.

[21] Ucar R. Determination of shear failure envelope in rock masses[J]. Journal of Geotechnical Engineering Division, ASCE, 1986, 112(3): 303–315.

[22] Jiang G L. Non-linear finite element formulation of kinematic limit analysis[J]. International Journal for Numerical Methods in Engineering, 1995, 38(16): 2775–2807.

[23] YANG Xiao-li, YIN Jian-hua. Slope stability analysis with nonlinear failure criterion[J]. Journal of Engineering Mechanics, ASCE, 2004, 130(3): 267–273.

[24] YANG Xiao-li, YIN Jian-hua. Estimation of seismic passive earth pressure with nonlinear failure criterion[J]. Engineering Structures, 2006, 28(3): 342–348.

[25] YANG Xiao-li. Upper bound limit analysis of active earth pressure considering different fracture surface with nonlinear yield criterion[J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 46–56.

[26] YANG Xiao-li. Unified strength solution for geotechnical structure reinforced by geotextile[J]. Journal of Structural Engineering, 2003, 30(2): 115–118.

[27] YANG Xiao-li, YIN Jian-hua, Li Liang. Influence of a nonlinear failure criterion on the bearing capacity of a strip footing resting on rock mass using a lower bound approach[J]. Canadian Geotechnical Journal, 2003, 40(3): 702–707.

                                 

收稿日期:2008-03-10;修回日期:2008-05-08

基金项目:交通部西部建设科技资助项目(200631878557)

通信作者:杨小礼(1970–),男,安徽安庆人,博士,教授,博士生导师,从事基础工程的教学与科研工作;电话:0731-2656248;E-mail: yangxl@mail.csu.edu.cn


[1] Baker R, Frydman S. Upper bound limit analysis of soil with nonlinear failure criterion[J]. Soils and Foundations, 1983, 23(4): 34-42.

[2] Zhang X J, Chen W F. Stability analysis of slopes with general nonlinear failure criterion[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(1): 33–50.

[3] Collins I F, Gunn C I M, Pender M J, et al. Slope stability analyses for materials with a nonlinear failure envelope[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(5): 533–550.

[4] Drescher A, Christopoulos C. Limit analysis slope stability with nonlinear yield condition[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(3): 341–345.

[5] Chen W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier Science, 1975.

[6] Hoek E, Brown E T. Empirical strength criterion for rock masses[J]. Journal of Geotechnical Engineering Division, ASCE, 1980, 106(9): 1013–1035.

[7] Hoek E. Strength of jointed rock masses[J]. Geotechnique, 1983, 33(2): 187–223.

[8] Hoek E, Brown E T. The Hoek–Brown failure criterion update[C]//Rock Engineering for Underground Excavation: Proceeding of 15th Canadian Symposium. Toronto, 1988: 31–38.

[9] Hoek E. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 1990, 27(4): 227–229.

[10] Hoek E, Wood D, Shan S. A modified Hoek-Brown criterion for jointed rock masses[C]// Proceeding of Rock Characterization. Hudson J A. Symposium of International Society Rock Mechanics: Eurock 92. 1992: 209–213.

[11] Hoek E, Brown E T. Practical estimates the rock mass strength[J]. International Journal of Rock Mechanics and mining Sciences, 1997, 34(8): 1165–1186.

[12] Hoek E, Carranze-Torres C, Corkum B. Hoek-Brown failure criterion–2002 edition[C]//Proceedings of the North American Rock Mechanics Society Meeting. Toronto, 2002: 267–273.

[13] Hoek E. A brief history of the development of the Hoek-Brown failure criterion[EB/OL]. Http:// www. rocscience. com, 2004.

[14] Cai M, Kaiser P K, Tasaka Y, et al. Determination of residual strength of jointed rock masses using the GSI system[J]. International Journal of Rock Mechanics and mining Sciences, 2007, 44(2): 247–265.

[15] YANG Xiao-li. Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 948–953.

[16] YANG Xiao-li, ZOU Jin-feng. Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1146–1152.

[17] YANG Xiao-li, YIN Jian-hua. Linear Mohr-Coulomb strength parameters from the nonlinear Hoek–Brown rock masses[J]. International Journal of Non-linear Mechanics, 2006, 41(8): 1000–1005.

[18] YANG Xiao-li, YIN Jian-hua. Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4): 550–560.

[19] YANG Xiao-li, LI Liang, YIN Jian-hua. Seismic and static stability analysis of rock slopes by a kinematical approach[J]. Geotechnique, 2004, 54(8): 543–549.

[20] YANG Xiao-li, LI Liang, YIN Jian-hua. Stability analysis of rock slopes with a modified Hoek-Brown failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(2): 181–190.

[21] Ucar R. Determination of shear failure envelope in rock masses[J]. Journal of Geotechnical Engineering Division, ASCE, 1986, 112(3): 303–315.

[22] Jiang G L. Non-linear finite element formulation of kinematic limit analysis[J]. International Journal for Numerical Methods in Engineering, 1995, 38(16): 2775–2807.

[23] YANG Xiao-li, YIN Jian-hua. Slope stability analysis with nonlinear failure criterion[J]. Journal of Engineering Mechanics, ASCE, 2004, 130(3): 267–273.

[24] YANG Xiao-li, YIN Jian-hua. Estimation of seismic passive earth pressure with nonlinear failure criterion[J]. Engineering Structures, 2006, 28(3): 342–348.

[25] YANG Xiao-li. Upper bound limit analysis of active earth pressure considering different fracture surface with nonlinear yield criterion[J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 46–56.

[26] YANG Xiao-li. Unified strength solution for geotechnical structure reinforced by geotextile[J]. Journal of Structural Engineering, 2003, 30(2): 115–118.

[27] YANG Xiao-li, YIN Jian-hua, Li Liang. Influence of a nonlinear failure criterion on the bearing capacity of a strip footing resting on rock mass using a lower bound approach[J]. Canadian Geotechnical Journal, 2003, 40(3): 702–707.