中国有色金属学报

文章编号:1004-0609(2009)11-1982-05

单晶和多晶钼纳米丝轴向拉伸的模拟对比

李小凡,胡望宇,肖时芳, 邓辉球

(湖南大学 物理与微电子科学学院,长沙 410082)

摘 要:

利用分子动力学模拟研究多晶纳米丝和单晶钼纳米丝在拉伸形变行为上的差异。结果表明:单晶纳米丝比多晶纳米丝具有更高的弹性模量、屈服应力和断裂应变,且在拉伸过程中伴随更多的结构转变和无序化,导致超塑性的出现;多晶纳米丝拉伸时的颈缩从应力高度集中的晶界开始,结构转变也仅局限于此晶界附近,系统的整体结构几乎没有受到影响,且晶界处的高应力在控制多晶纳米丝的塑性形变和断裂过程中起着决定性的作用;纳米丝拉伸时由应力引起的结构转变也是塑性变形的一种重要机制。

关键词:

钼纳米丝结构转变力学性能分子动力学

中图分类号:TG 113.25       文献标识码:A

Comparison of simulation of single-crystalline and

polycrystalline Mo nanowires under uniaxial tensile strain

LI Xiao-fan1, HU Wang-yu1, XIAO Shi-fang1, DENG Hui-qiu1

(1. School of Physics and Microelectronics Science, Hunan University, Changsha 410082, China)

Abstract: Using molecular dynamic simulations, the difference of tensile deformation behavior between the polycrystalline Mo nanowires and single-crystalline counterparts was investigated. The results show that, compared with the polycrystalline nanowires, the single-crystalline nanowires have higher elastic modulus, yield strength and fracture strain, and more local atomic structural evolutions and amorphization exist during tensile strain, which results in the superplasticity behaviors of single-crystalline nanowires. For the polycrystalline nanowires, the necking commences from the grain boundary regions of high stress concentration, and the local atomic structural transitions happen only near these regions. Thus, the degree of structure order is rarely affected with increasing strain. The high stresses found in the grain boundary regions of polycrystalline nanowires clearly play a dominant role in controlling both inelastic deformation and fracture processes in the nanoscale objects. The observed atomic configuration transformation is a stress-induced mechanism accounting for plastic deformation.

Key words: Mo nanowires; configuration transformation; mechanical property; molecular dynamics

                    

采用金属纳米丝作为化学和生物传感器的标准件、模板和连接件,还有在光电器件上的使用都要求对它们的结构和力学性能有更深入的了解[1-2]。金属纳米丝一个很重要的特征就是由大的比表面积导致的表面效应。表面应力引起的金属丝内的内应力常常是GPa数量级的,从而导致金属纳米丝的力学性能完全不同于个体材料[3-4]。一般而言,将样品尺寸减小到纳米量级有利于减少材料中的缺陷。然而最近的实验观察表明金属纳米丝常常呈多晶态[5-6]。由于对无支撑的单个纳米丝进行拉伸和屈服试验的困难,实验上还难以揭露包含晶界和界面的纳米丝的力学性能[7]。在这方面原子模拟是一个非常有力的工具,它能够在纳米尺度上揭示材料结构和性能间的关系[8-11]

在过去的十多年中,人们在用原子模拟研究单晶FCC结构金属纳米丝的力学性能方面做了大量的工    作[12-15]。其中SEROODEH等[15]采用分子动力学方法研究应变率、尺寸和温度对镍纳米丝力学行为的影响。发现随应变率的增加,屈服应力增加,而弹性模量不变;随温度升高,弹性模量和屈服应力都线性减小;随比表面积减小,屈服应力增加。GUO等[16]研究应力引起体心结构金属与合金裂纹尖端的马氏体相变时发现,局域应力和晶体位向一起在马氏体相变的机制中起着重要作用。WEN等[17]定量研究应变率对镍纳米丝形变行为的影响时发现:当应变率低于5×109 s-1时,镍纳米丝保持它的晶体结构;当应变率高于8×1010 s-1时,镍纳米丝从FCC结构转换成了完全的非晶态。然而,关于BCC结构金属纳米丝屈服和断裂行为的研究还很少。在以往的工作中,研究晶粒尺寸和长径比对多晶钼纳米丝力学性能和形变的影响[18]。本文作者研究单晶钼纳米丝的力学性能、形变过程和结构变化,并与同样尺寸的包含晶界的多晶纳米丝进行比较。目的在于从原子尺度上解释晶界和表面对钼纳米丝强度、塑性、断裂和结构变化的影响。

1  模拟方法

模拟试样分别为一根正方形截面的单晶BCC结构钼纳米丝上和用Voronoi元胞法[19]构造的包含晶界的多晶钼纳米丝。多晶纳米丝的晶粒尺寸为4.92 nm。这两根纳米丝的尺寸均为6.3 nm×6.3 nm×25.1 nm。通过仅在拉伸方向应用周期性边界条件可以模拟无限长的纳米丝。钼原子间的相互作用采用改进分析型EAM模型势[20]。模拟温度为300 K,通过速度标定法调温控制体系温度。拉伸前利用分子动力学方法(时间步长为5 s-1,数值积分方法采用四阶GEAR算法)将试样弛豫200 ps(400 000步),达到系统能量最小,得到稳定的纳米丝。随后用“连续应变”[21]模拟单一轴向拉伸样品:试样每步沿Z方向拉伸原长的5×10-5,再分子动力学弛豫,这样拉伸20步后,用Monte Carlo算法优化系统其他两个方向,保持垂直于轴向的另两个方向的应力为零。Z方向的应力计算基于Virial定律[22],拉伸的应变率为1010 s-1

2  结果和讨论

图1所示为单晶和多晶钼纳米丝的应力—应变曲线。从图1中可以看出,这两条曲线都表现出典型的塑性金属拉伸应力—应变曲线,在最初的弹性形变阶段,这两个纳米丝都显示线性的应力—应变关系。对这两条曲线计算的弹性模量分别为330和220 GPa。其中多晶纳米丝的弹性模量与SRIVATSAN等[23]所报道用等离子压实钼粉的实验结果非常接近。单晶纳米丝的弹性模量比多晶高出30%,这是由于在较小晶粒尺寸的多晶纳米丝内有大量的原子位于晶界处,而晶界的原子结合比晶粒内原子弱,晶界的滑动也更加容易。与单晶纳米丝相比,在塑性形变阶段,多晶纳米丝显示出几个明显不同的特征。1) 最初的屈服仅导致应力出现较小的下降,从应变为5.5%时的7.63 GPa下降为应变为10%的5.90 GPa,而单晶纳米丝从13.6 GPa下降到3.40 GPa。纳米丝中多次屈服引起应力随应变呈“之”字形的上升和下降,这种现象被很多FCC结构单晶纳米丝的模拟所肯定[12, 24]。“之”字形的曲线关系意味着原子的重新排列[24],原子的重排引起结构的转变。单晶纳米丝的内应力随应变更显著的变化表现为更大的结构变化。这点被后面拉伸过程中的原子对近邻分析(CNA)和径向分布函数(RDF)所证实。2)多晶纳米丝的前后两次屈服时的应变仅相差14%,而单晶纳米丝相差48%。3) 多晶纳米丝的屈服应力和断裂应变明显比单晶纳米丝的低。多晶纳米丝的屈服应力为7.63 GPa,而单晶纳米丝的为13.6 GPa。多晶的最终的断裂应变为69%,而单晶的最终的断裂应变为120%,表现出明显超塑性。

图1  单晶和多晶钼纳米丝的应力—应变曲线

Fig.1  Stress—strain curves of single-crystalline and polycrystalline Mo nanowires

图2所示为单晶钼纳米丝在拉伸过程中的应力—应变曲线和对应于应力—应变曲线所标应变下的形变截面图。为了更好地理解形变机制,采用原子对近邻分析技术来研究拉伸过程中结构的演化,对不同晶体结构原子以不同的颜色和不同的图形标明。单晶纳米丝的应力-应变响应类似于PARK[25]描述的金属间化合物镍铝(NiAl)纳米丝,他在纳米丝内观测到内应力引起的马氏体相变。单晶纳米丝从最初态<1>到状态<2>是弹性形变阶段,在这个阶段没有观察到结构转变。从第一次屈服应变5%以后,出现BCC结构向FCC结构的转变。当形变达到37%时,所有的BCC结构完全转变为FCC结构。从状态<4>到<5>几乎没有结构转变发生,开始在多处出现表面断裂现象。随后,单晶纳米丝逐步失去它的晶体结构,大量原子呈现无序排列,并发生少量从FCC结构转变回BCC结构的现象。纳米丝从应变60%开始颈缩,并且有少量的HCP结构堆垛层错出现,继续拉伸到120%,整个纳米丝断裂。纳米丝断裂应力没有完全降为零是由于系统内还有残余应力。这种非晶化导致出现超塑性已经为很多原子模拟所证实[24, 26-28]。这些模拟也与LU等[29]的实验结果一致,他们在电镀获得的超纯超致密纯纳米铜上观察到超过5 000%的伸长率。新晶粒形核生长引起的BCC结构和FCC结构间的相互转变现象曾经被LATAPIE和FARKAS[30]、GUO和ZHAO[31]以及GUO[32]所报道。可见,这种结构转变也是应力引起的一种塑性形变机制。

图2  单晶钼纳米丝的应力—应变曲线以及不同应变下的原子结构

Fig.2  Stress—strain curves of single-crystalline Mo nanowire and corresponding structures of atom at different strains

图3所示为多晶钼纳米丝的拉伸过程形变断裂截面图。从图3中可以看出,与单晶纳米丝在形变和结构转变上的差异。同样有BCC结构和FCC结构之间的相互转变现象发生,但由于晶界的限制,这种转变仅仅在缩颈附近的有限几个晶粒内被观察到,大部分的BCC结构被保留下来,从而使整个系统的结构几乎看不到明显的变化。多晶纳米丝拉伸时仅仅在在某处晶界发生表面断裂、颈缩和断裂,说明应力在此晶界处高度集中,高度集中的应力引起它附近的晶格发生畸变从而导致结构的转变。这种结构转变的差异被它们在拉伸过程中各相应应变下的径向分布函数(见图4)所证实。径向分布函数表征着结构的无序化程度。


图3  不同应变下多晶纳米丝的原子结构

Fig.3  Structures of atom of polycrystalline Mo nanowire at different strains: (a) ε=0; (b) ε=20%; (c) ε=50%; (d) ε=60%; (e) ε=68%


 

图4  不同应变时单晶和多晶钼纳米丝的径向分布函数

Fig.4  Radial distribution function of single-crystalline(a) and polycrystalline Mo nanowires(b) at different strain

如果在半径r到r+?r的球壳内的原子数为n(r),理想晶体的原子密度为ρ0(对面心立方晶体而言为4),则径向分布函数为

从图4(a)可以看出,在应变为37%处,3 ?附近的第一、第二近邻的两个峰变成了一个峰,系统全部变成了FCC结构,同时晶格常数也发生改变;在应变为60%处,第一和第二峰完全钝化,其余的峰基本消失,系统的结构表现出非晶态的特征。而多晶纳米丝的径向分布函数显示除第一和第二峰之间的谷底随应变增加而抬高以外,其余几乎没有什么变化,也就表明多晶纳米丝拉伸过程中结构变化甚微。单晶纳米丝的断裂应变比多晶大很多的原因主要如下:1) 由于单晶纳米丝从60%应变就失去它的晶体结构出现无序化,使系统像非晶固体或液体那样的流动,从而表现出很好的塑性;2) 由于单晶纳米丝中更大量的结构转变消耗掉了大量的应力,如应变从5%到37%的过程中,应力基本没有变化,主要发生从BCC结构到FCC结构的转变。

3  结论

1) 由于晶界内原子结合较弱,多晶纳米丝的屈服应力和弹性模量都要比单晶的低很多。

2) 由于单晶纳米丝形变时发生大量的结构转变并且严重无序化,它的断裂应变比多晶的要大得多,表现出超塑性。

3) 在多晶纳米丝中晶界处高度集中的应力引起此处的颈缩和结构转变。

REFERENCES

[1] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971-1975.

[2] SURVAVANSHI A P, YU M F. Probe-based electrochemical fabrication of freestanding Cu nanowire array[J]. Appl Phys Lett, 2006, 88(8): 0831031-0831033.

[3] DIAO J, GALL K, DUNN M L. Surface-stress-induced phase transformation in metal nanowires[J]. Nat Mater, 2003, 2: 656-660.

[4] DIAO J, GALL K, DUNN M L. Yield strength asymmetry in metal nanowires[J]. Nano Lett, 2004, 4(10): 1863-1867.

[5] WU W, BRONGERSMA S H, HOVE M V, MAEX K. Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions[J]. Appl Phys Lett, 2004, 84(15) 2838-2840.

[6] KLINGER L, RABKIN E. Thermal stability and creep of polycrystalline nanowires[J]. Acta Materialia, 2006, 54(2): 305-311.

[7] WU B, HEIDELBERG A, BOLAND J J. Mechanical properties of ultrahigh-strength gold nanowires[J]. Nat Mater, 2005, 4: 525-529.

[8] BRINCKMANN S, KIM J Y, GREER J R. Fundamental differences in mechanical behavior between two types of crystals at the nanoscale[J]. Phys Rev Lett, 2008, 100(15): 1555021- 1555024.

[9] SWYGENHOVEN H V. Polycrystalline materials: Grain boundaries and dislocations[J]. Science, 2002, 296(5565): 66-67.

[10] SCHI?TZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper[J]. Science, 2003, 301(5638): 1357-1359.

[11] CAO A J, WEI.Y G. Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations[J]. Appl Phys Lett, 2006, 89(4): 19191-19193.

[12] KOH S J A, LEE H P. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires[J]. Nanotechnology 2006, 17: 3451-3467.

[13] LIN J S, JU S P, LEE W J. Mechanical behavior of gold nanowires with a multishell helical structure[J]. Phys Rev B, 2005, 72(8): 0854481-0854486.

[14] DIAO J, GALL K, DUNN M L, ZIMMERMAN J A. Atomistic simulations of the yielding of gold nanowires[J]. Acta Materialia, 2006, 54(3): 643-653.

[15] SEROODEH A R, ATTARIANI H, KHOSROWNEJAD M. Nickel nanowires under uniaxial loads: A molecular dynamics simulation study[J]. Comput Mater Sci, 2008, 44(2): 378-384.

[16] GUO Ya-fang, WANG Yue-sheng, ZHAO Dong-liang, WU Wen-ping. Mechanisms of martensitic phase transformations in body-centered cubic structural metals and alloys: Molecular dynamics simulations[J]. Acta Materialia, 2007, 55(19): 6634-6641.

[17] WEN Yu-hua, ZHU Zi-zhong, ZHU Ru-zeng. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects[J]. Comput Mater Sci, 2008, 41(4): 553-560.

[18] LI Xiao-fan, HU Wang-yu, XIAO Shi-fang, HUANG Wei-qing. Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects[J]. Physica E, 2008, 40(10): 3030-3036.

[19] CHEN D. Structural modeling of nanocrystalline materials [J]. Comput Mater Sci, 1995, 3(3): 327-333.

[20] HU Wang-yu, MASAHIRO F. The application of the analytic embedded atom potential to alkali metal[J]. Modell Simul Mater Sci Eng, 2002, 10: 707-726.

[21] SCHI?TZ J, VEGGE T, DI TOLLA F D, JACOBSEN K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals[J]. Phys Rev B, 1999, 60(17): 11971-11983.

[22] PARK H S, ZIMMERMAN J A. Modeling inelasticity and failure in gold nanowires[J]. Phys Rev B, 2005, 72(5): 0541061-0541068.

[23] SRIVATSAN T S, RAVI B G, NARUKA A S, RIESTER L, PETRAROLI M. The microstructure and hardness of molybdenum powders consolidated by plasma pressure compaction[J] Powder Tech, 2001, 114: 136-144.

[24] KOH S J A., LEE H P, LU C, CHENG Q H. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain rate effects[J]. Phys Rev B, 2005, 72(8): 54141-541410.

[25] PARK H S. Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires[J]. Nano Lett, 2006, 6(5): 958-962.

[26] WALSH P, LI W, KALIA R K, NAKANO A, VASHISHTA P, SAINI S. Structural transformation, amorphization, and fracture in nanowires: A multimillion-atom molecular dynamics study[J]. Appl Phys Lett, 2001, 78(21): 3328-3330.

[27] IKEDA H, QI Y, CAGIN T, SAMWER K, JOHNSON W L, WILLIAM A. GODDARD III. Strain rate induced amorphization in metallic nanowires[J]. Phys Rev Lett, 1999, 82(14): 2900-2903.

[28] WANG Dong-xu, ZHAO Jian-wei, HU Shi, YIN Xing, LIANG Shuai, LIU Yun-hong, DENG Sheng-yuan. Where, and how, does a nanowire break? [J]. Nano Lett, 2007, 7(5): 1208-1212.

[29] LU L, SUI M L, LU K. Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science, 2000, 87(5457): 1463-1466.

[30] LATAPIE A, FARKAS D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe[J]. Modelling Simul Mater Sci Eng, 2003, 11: 745-753.

[31] GUO Ya-fang, ZHAO Dong-liang. Atomistic simulation of structure evolution at a crack tip in bcc-iron[J]. Mater Sci Eng A, 2007, 448(1/2): 281-286.

[32] GUO Ya-fang, WANG Yue-sheng, ZHAO Dong-liang. Atomistic simulation of stress-induced phase transformation and recrystallization at the crack tip in bcc iron[J]. Acta Mater, 2007, 55(1): 401-407.

                                 

基金项目:国家自然科学基金资助项目(50871038;50371026)

收稿日期:2008-12-22;修订日期:2009-05-16

通信作者:胡望宇,教授,博士;电话:0731-8823971;E-mail: wangyuhu2001cn@yahoo.com.cn

(编辑 李艳红)


摘  要:利用分子动力学模拟研究多晶纳米丝和单晶钼纳米丝在拉伸形变行为上的差异。结果表明:单晶纳米丝比多晶纳米丝具有更高的弹性模量、屈服应力和断裂应变,且在拉伸过程中伴随更多的结构转变和无序化,导致超塑性的出现;多晶纳米丝拉伸时的颈缩从应力高度集中的晶界开始,结构转变也仅局限于此晶界附近,系统的整体结构几乎没有受到影响,且晶界处的高应力在控制多晶纳米丝的塑性形变和断裂过程中起着决定性的作用;纳米丝拉伸时由应力引起的结构转变也是塑性变形的一种重要机制。

[1] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971-1975.

[2] SURVAVANSHI A P, YU M F. Probe-based electrochemical fabrication of freestanding Cu nanowire array[J]. Appl Phys Lett, 2006, 88(8): 0831031-0831033.

[3] DIAO J, GALL K, DUNN M L. Surface-stress-induced phase transformation in metal nanowires[J]. Nat Mater, 2003, 2: 656-660.

[4] DIAO J, GALL K, DUNN M L. Yield strength asymmetry in metal nanowires[J]. Nano Lett, 2004, 4(10): 1863-1867.

[5] WU W, BRONGERSMA S H, HOVE M V, MAEX K. Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions[J]. Appl Phys Lett, 2004, 84(15) 2838-2840.

[6] KLINGER L, RABKIN E. Thermal stability and creep of polycrystalline nanowires[J]. Acta Materialia, 2006, 54(2): 305-311.

[7] WU B, HEIDELBERG A, BOLAND J J. Mechanical properties of ultrahigh-strength gold nanowires[J]. Nat Mater, 2005, 4: 525-529.

[8] BRINCKMANN S, KIM J Y, GREER J R. Fundamental differences in mechanical behavior between two types of crystals at the nanoscale[J]. Phys Rev Lett, 2008, 100(15): 1555021- 1555024.

[9] SWYGENHOVEN H V. Polycrystalline materials: Grain boundaries and dislocations[J]. Science, 2002, 296(5565): 66-67.

[10] SCHI?TZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper[J]. Science, 2003, 301(5638): 1357-1359.

[11] CAO A J, WEI.Y G. Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations[J]. Appl Phys Lett, 2006, 89(4): 19191-19193.

[12] KOH S J A, LEE H P. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires[J]. Nanotechnology 2006, 17: 3451-3467.

[13] LIN J S, JU S P, LEE W J. Mechanical behavior of gold nanowires with a multishell helical structure[J]. Phys Rev B, 2005, 72(8): 0854481-0854486.

[14] DIAO J, GALL K, DUNN M L, ZIMMERMAN J A. Atomistic simulations of the yielding of gold nanowires[J]. Acta Materialia, 2006, 54(3): 643-653.

[15] SEROODEH A R, ATTARIANI H, KHOSROWNEJAD M. Nickel nanowires under uniaxial loads: A molecular dynamics simulation study[J]. Comput Mater Sci, 2008, 44(2): 378-384.

[16] GUO Ya-fang, WANG Yue-sheng, ZHAO Dong-liang, WU Wen-ping. Mechanisms of martensitic phase transformations in body-centered cubic structural metals and alloys: Molecular dynamics simulations[J]. Acta Materialia, 2007, 55(19): 6634-6641.

[17] WEN Yu-hua, ZHU Zi-zhong, ZHU Ru-zeng. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects[J]. Comput Mater Sci, 2008, 41(4): 553-560.

[18] LI Xiao-fan, HU Wang-yu, XIAO Shi-fang, HUANG Wei-qing. Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects[J]. Physica E, 2008, 40(10): 3030-3036.

[19] CHEN D. Structural modeling of nanocrystalline materials [J]. Comput Mater Sci, 1995, 3(3): 327-333.

[20] HU Wang-yu, MASAHIRO F. The application of the analytic embedded atom potential to alkali metal[J]. Modell Simul Mater Sci Eng, 2002, 10: 707-726.

[21] SCHI?TZ J, VEGGE T, DI TOLLA F D, JACOBSEN K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals[J]. Phys Rev B, 1999, 60(17): 11971-11983.

[22] PARK H S, ZIMMERMAN J A. Modeling inelasticity and failure in gold nanowires[J]. Phys Rev B, 2005, 72(5): 0541061-0541068.

[23] SRIVATSAN T S, RAVI B G, NARUKA A S, RIESTER L, PETRAROLI M. The microstructure and hardness of molybdenum powders consolidated by plasma pressure compaction[J] Powder Tech, 2001, 114: 136-144.

[24] KOH S J A., LEE H P, LU C, CHENG Q H. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain rate effects[J]. Phys Rev B, 2005, 72(8): 54141-541410.

[25] PARK H S. Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires[J]. Nano Lett, 2006, 6(5): 958-962.

[26] WALSH P, LI W, KALIA R K, NAKANO A, VASHISHTA P, SAINI S. Structural transformation, amorphization, and fracture in nanowires: A multimillion-atom molecular dynamics study[J]. Appl Phys Lett, 2001, 78(21): 3328-3330.

[27] IKEDA H, QI Y, CAGIN T, SAMWER K, JOHNSON W L, WILLIAM A. GODDARD III. Strain rate induced amorphization in metallic nanowires[J]. Phys Rev Lett, 1999, 82(14): 2900-2903.

[28] WANG Dong-xu, ZHAO Jian-wei, HU Shi, YIN Xing, LIANG Shuai, LIU Yun-hong, DENG Sheng-yuan. Where, and how, does a nanowire break? [J]. Nano Lett, 2007, 7(5): 1208-1212.

[29] LU L, SUI M L, LU K. Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science, 2000, 87(5457): 1463-1466.

[30] LATAPIE A, FARKAS D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe[J]. Modelling Simul Mater Sci Eng, 2003, 11: 745-753.

[31] GUO Ya-fang, ZHAO Dong-liang. Atomistic simulation of structure evolution at a crack tip in bcc-iron[J]. Mater Sci Eng A, 2007, 448(1/2): 281-286.

[32] GUO Ya-fang, WANG Yue-sheng, ZHAO Dong-liang. Atomistic simulation of stress-induced phase transformation and recrystallization at the crack tip in bcc iron[J]. Acta Mater, 2007, 55(1): 401-407.