中国有色金属学报

文章编号:1004-0609(2012)10-2930-08

 

3种典型能量代谢菌浸出黄铜矿及其硫形态的转化

 

彭安安1, 2,汤  露2,夏金兰1, 2,夏乐先1, 2,赵小娟1,聂珍媛1, 2,朱  薇1, 2

 

(1. 中南大学 生物冶金教育部重点实验室,长沙 410083;

2. 中南大学 资源加工与生物工程学院,长沙 410083)

摘 要:

比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV (vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。

关键词:

硫氧化X射线吸收近边结构光谱(XANES)黄铜矿硫形态

中图分类号:Q 939               文献标志码:A

 

Sulfur/iron oxidation activity of three typical bioleaching bacteria and

sulfur speciation in bioleaching of chalcopyrite

 

PENG An-an1, 2, TANG Lu2, XIA Jin-lan1, 2, XIA Le-xian1, 2, ZHAO Xiao-juan1, NIE Zhen-yuan1, 2, ZHU Wei1, 2

 

(1. Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China;

2. School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, China)

Abstract: The sulfur/iron oxidation activities of three typical mesosphilic bioleaching bacteria, such as Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum and Acidithiobacillus thiooxidans, were studied and their mixture in bioleaching of chalcopyrite were compared. Meanwhile, the relevant sulfur speciation on the surface of chalcopyrite leached by pure/mixed bacteria was investigated by X-ray diffractometry (XRD) and X ray absorption near-edge structure (XANES). The results show that the dissolution rate of chalcopyrite is higher when the redox potential is less than 400 mV (vs SCE), and above that potential, the dissolution rate of chalcopyrite apparently decreases, the mixed culture has a higher sulfur/ion oxidation activity than that of the pure cultures of bacteria. The fitted results of XANES spectra indicate that the mixed culture promotes the formation of chalcocite and obviously restrain the passivation layer (sulfur and jarosite).

Key words: sulfur-oxidation; X-ray absorption near-edge structure; chalcopyrite; sulfur speciation

基金项目:国家自然科学基金资助项目(50974140);北京同步辐射光源装置重点用户课题(VR-09157)

收稿日期:2011-05-15;修订日期:2012-0-30

通信作者:夏金兰,教授,博士;电话:0731-88836944;E-mail: jlxia@csu.edu.cn


生物浸出过程中,矿物表面和溶液中会产生大量的含硫化合物,它们在生物浸出过程中起着不同的作用。研究发现,在A. ferrooxidans单独氧化浸出黄铜矿过程中,铜的浸出速率逐渐减小,分析发现矿物表面有元素硫、黄钾铁矾等物质[1],其中黄钾铁矾的生成随温度和pH的升高而增加[2-3]。SANDSTROM等[4]比较酸浸和Sulfolobus metallicus浸出黄铜矿时,发现二者在低电位时会累积单质硫,而在高电位浸出时主要产生黄钾铁矾。SASAKI等[5]研究发现黄铜矿的浸出过程中可能会形成缺铁的次生矿物,如铜蓝或辉铜矿等,这些中间产物更加容易浸出,可以加速浸出过程的进行。ZHU等[6]用混合高温嗜酸菌浸出黄铜矿 时,发现混合菌体系的硫氧化活性及浸出率较单一菌浸出时高,用XANES等方法发现,浸出过程中出现铜蓝等次生硫化矿物。

在复杂的实际中温浸矿体系中,浸矿细菌主要为嗜中温的硫或/和铁代谢细菌,L. ferriphilum、        A. thiooxidans及A. ferrooxidans 分别是其中的典型代表。SCHIPPERS和SAND[7]以及SASAKI等[8]研究发现,A. thiooxidans的存在能促进A. ferrooxidans氧化浸出黄铜矿。RAWLINGS等[9]研究表明,在较低的pH值及高电位条件下,L. ferriphilum为浸矿微生物群落中的优势菌株,与A. ferrooxidans相比,L. ferriphilum的亚铁氧化能力更高。

硫的K边XANES光谱是一种基于同步辐射技术的相当灵敏的指纹光谱方法,包含丰富的中心原子和近邻结构的信息,并且能够实现待测样品微小区域的非破坏性、原位直接表征。目前,大多数关于细菌浸出过程中含硫中间产物的形成和形态变化的研究都是利用XRD、XPS、Raman光谱等分析方法[10-11],而极少人用XANES这种原位分析法研究混合菌浸出黄铜矿硫化学形态变化及其与硫/铁氧化之间的内在联   系[12-13]。本实验拟在比较研究A. ferrooxidans、A. thiooxidans、L. ferriphilum单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况的基础上,采用X   射线吸收近边结构光谱法(XANES)及XRD法对A. ferrooxidans、A. thiooxidans、L. ferriphilum单独及混合浸出黄铜矿过程中黄铜矿表面硫形态进行监测,对不同细菌作用下黄铜矿浸出过程表面硫形态转化进行研究,通过这些研究揭示3株典型能量代谢功能菌对黄铜矿单独/混合浸出间的区别及其与硫形态转化的关系,为基于不同能量代谢功能菌浸出黄铜矿工艺的优化和应用等奠定基础。

1  实验

1.1  材料

1) 菌种及培养基

菌种A. ferrooxidans ATCC23270、A. thiooxidans A01、L. ferriphilum YSK均来源于生物冶金教育部重点实验室。基本培养基组成如下:(NH4)2SO4,1.5 g;KH2PO4,0.25 g;MgSO4·7H2O,0.25 g;CaCl2·2H2O,0.01 g;A. ferrooxidans培养过程中使用44.7 g/L FeSO4·7H2O作为能源,L. ferriphilum 使用80 g/L FeSO4·7H2O作为能源,A. thiooxidans使用10 g/L S0作为能源。培养基初始pH值用稀硫酸调至1.8。以上细菌培养后经过滤、5 000 r/min离心,pH 2.0硫酸洗涤3次后用作浸矿菌种。

2) 黄铜矿及标样准备

实验中所用黄铜矿、辉铜矿、铜蓝由中南大学资源加工与生物工程学院矿物工程系提供,矿样经过破碎、研磨、筛分,矿粉粒径为0.074~0.147 mm,混匀后黄铜矿经ICP-AES分析其成分如表1所列。黄钾铁矾的制备按照杨益[14]的方法进行。

表1  黄铜矿的主要成分组成

Table 1  Main components of chalcopyrite (mass fraction, %)

1.2  生物浸出实验

生物浸出黄铜矿时,用250 mL三角瓶内装150 mL灭菌基本盐培养基,加入6 g 现磨好的黄铜矿粉末(即矿浆浓度为4%(质量体积浓度)),将A. ferrooxidans、A. thiooxidans和L. ferriphilum分别或混合接入,接种后细菌初始浓度为3.0×106 /mL(混合接入的则每种细菌浓度为1.0×106 /mL)。初始pH 均用配置好的硫酸调节至1.8。另外设置空白酸性培养基作为浸出实验空白对照。将接种后的培养液置于30 ℃,转速170 r/min的恒温空气摇床培养。浸出过程中每3 d取样进行浸出化学分析,每6 d取样进行硫的K边XANES分析。

1.3  样品制备

为了分析黄铜矿浸出过程中矿物表面硫的化学形态,在浸出过程中每隔6 d从浸出液中取出少量矿粉,用去离子水清洗多次后样品用液氮快速冷冻干燥,冻干样品保存在充氮气容器中以备XRD 和硫的K边XANES分析。制备粉末样品均在充氮气的厌氧手套箱中完成。

1.4  浸出化学行为及矿物组成分析

浸出过程中每3 d取样进行浸出化学分析,其中pH采用PHSJ-4A型pH计进行测量,氧化还原电位(Eh)采用铂电极及甘汞电极测量,Fe3+浓度通过磺基水杨酸法测定[15],SO42-浓度采用硫酸钡沉淀法测定[16]。摇匀的浸矿液加入Tween-20至0.1%的终浓度后震荡1 min后,静置几分钟取上清液用血细胞计数板计数,以此测定浸矿体系中细菌总浓度[17]。细菌作用前后的金属硫化矿经干燥处理后用X射线衍射仪(Japan, D/ruax2550PC)分析其中矿物组成。

1.5  硫的K边XANES检测

硫的K边XANES光谱测量在中国科学院高能物理研究所北京同步辐射装置中能X射线站(4B-7A)实验站完成。实验运行条件如下:同步辐射储存环能量为2.5 GeV, 实验线站能量覆盖为2 100~6 000 eV,电子流强度为 80~180 mA;从储存环中引出同步辐射光经Si (111)平面双晶单色器获取实验所需能量。

实验选取铜蓝、黄铜矿、辉铜矿、黄钾铁矾和元素硫作为XANES的参照样品。得到的数据选取边后已无结构吸收的直线区的两点进行归一化处理。光谱拟合选取2 450~2 510 eV区间的谱图进行。在所有情况下,光谱都是以最大吸收光谱为标准进行校准,所有的数据都用Winxas(3.0)进行背景去除和归一化处理,光谱拟合用LSFitXAFS完成。

2  结果与讨论

2.1  单一及混合细菌硫氧化活性的比较分析

本实验通过检测浸矿过程中细菌浓度、pH及硫酸根离子浓度,表征不同细菌在黄铜矿浸出过程中硫氧化活性的变化。

图1所示为单一及混合细菌作用下细菌浓度、pH值及SO42-浓度的变化。从图1可以看出,A. thiooxidans和L. ferriphilum单独浸出黄铜矿时细菌浓度均较低(<1×107 /mL)。JONHSON等[18]研究发现Leptospirillum spp.不能耐受高的铜离子浓度(<5 mmol/L),但比较适合生长于低pH及较高的氧化还原电位(>690 mV) 。A. thiooxidans浸出黄铜矿过程中pH一直呈上升趋 势,与无菌对照相似,浸矿过程主要以酸浸为主。A. ferrooxidans及混合菌浸出过程中pH先升高后迅速下降,其主要原因是细菌硫氧化产生硫酸,同时,铁的沉降也是产酸的过程(如方程(1)所示)。黄铜矿的浸出过程中的耗酸和产酸可分别用方程(2)和(3)表示。VIRAMONTES-GAMBOA等[19]通过电化学手段发现随着pH降低,代表铜溶出速率的电流值也随之上升。

3Fe3++K++2HSO4-+6H2O→KFe3(SO4)2(OH)6+8H+       (1)

CuFeS2+4H+→Fe2++Cu2++2H2S                (2)

 

图1  单一及混合细菌作用下细菌浓度、pH值及SO42-浓度的变化

Fig.1  Changes of cell densities (a), pH values (b) and sulfate ions concentrations(c) during leaching of chalcopyrite by pure and mixed bacteria

2S0+2H2O+3O22SO42-+4H(3)

图1(b)和(c)分别表示混合菌浸出黄铜矿过程中溶液中pH值低于单一菌浸出,SO42-浓度高于细菌单独浸出,其中在A. thiooxidans单独浸出时几乎看不到SO42-浓度的明显变化,说明A. thiooxidans在黄铜矿溶出中硫氧化活性较低,但在混合浸出时,         A. thiooxidans、L. ferriphilum的存在能增强浸出体系的硫氧化活性。

 

2.2  单一及混合细菌对黄铜矿浸出行为的比较分析

本实验通过检测浸出过程中铜离子浸出率、氧化还原电位、Fe3+浓度以比较单一及混合菌对黄铜矿的浸出行为,如图2中所示,A. thiooxidans、L. ferriphilum单独浸出黄铜矿时,电位及[Fe3+]均较低,细菌浸出率

 

图2  单一和混合菌浸出黄铜矿过程中铜离子浸出率、电位及Fe3+浓度变化

Fig.2  Changes of copper recovery (a), redox potential (b) and ferric ion concentrations (c) during chalcopyrite bioleaching of pure and mixed bacteria

分别为11.3%及23.4%。混合菌及A. ferrooxidans浸出3 d后,其浸出速率明显提高;9~12 d时,由于电位的快速上升导致铁离子的沉降(方程(1)),使得浸出速率变缓。根据方程(4)可看出,[Fe3+]上升有利于黄铜矿的溶解,因此,混合菌在浸出21 d后,由于溶液中[Fe3+]的增加再次出现明显升高过程,铜离子浸出率最终达到67.7%,而A. ferrooxidans由于溶液中[Fe3+]较低,因此没有出现此趋势,浸出率仅为59.5%。另外,混合菌浸出过程中[Fe3+]与电位都较A. ferrooxidans单独浸出时高,说明A. thiooxidans、L. ferriphilum的存在能提高浸出体系的铁氧化活性(方程(5)),从而促进矿物的溶出,这与CRUNDWELL[20]的阐述相似。另外,在浸矿效果显著的体系中(A. ferrooxidans及混合菌)的电位呈快速上升趋势。

CuFeS2 + 4 Fe3+→Fe2++ Cu2+ + S0                  (4)

4Fe2++O2+4H+4Fe3++2H2O   (5)

2.3  单一及混合细菌浸出黄铜矿表面硫形态变化的比较分析

利用XRD及硫的K边XANES法对细菌浸出黄铜矿表面矿渣硫形态进行分析。由图3的XRD分析显示,经过30 d后,混合菌浸出后体系中生成了大量的黄钾铁矾。进一步的XRD定量分析显示,浸出残渣中黄铜矿含量仅为13%,黄钾铁矾含量则高达86%。而空白对照组的黄铜矿则没有发生明显变化。

图4所示为标准样品的硫的K边XANES光谱及样品拟合图谱。如图4(a)所示,本实验选取铜蓝(CuS)、黄铜矿(CuFeS2)、辉铜矿(Cu2S)、黄钾铁矾(KFe3(SO4)2(OH)6)和元素硫(S0)等标准化合物进行硫的K边XANES扫描。基于这些标准化合物的XANES谱图,利用LSFitXAFS软件对混合菌浸出12 d后黄铜矿表面硫的K边XANES进行拟合分析(见图4(b)),结果显示其中可能含有50.92%黄铜矿、25.39%黄钾铁矾、5.51%元素硫以及5.78%辉铜矿。其他时间段的拟合结果如表2所列。单一或混合菌浸出过程中,不同时间段内黄铜矿的硫的K-边XANES谱如图5所示。结果显示自第6天开始的谱图中SO42-的特征吸收峰(2.480 4 KeV)逐渐增强。由图5及表2可看出,在混合菌浸出黄铜矿过程中,矿物表面在前18 d均出现了不同含量的辉铜矿,元素硫在第6天出现,随后含量逐渐减少,同时在整个时间段内黄钾铁矾在不断积累(最终达73.64%)。此外整个过程均没有检测到铜蓝。A. ferrooxidans浸出黄铜矿30 d后,矿物表面积累了大量黄钾铁矾(83.65%),A. thiooxidans浸出黄铜矿时浸出率较低(11.3%),表面物质与空白几乎相同,而L. ferriphilum浸出过程中由于矿物表面积累了较多的元素硫,浸出效果也并不明显(见图2)。

以上结果表明,矿物表面黄钾铁矾、元素硫等钝化层的形成是黄铜矿浸出率下降的主要原因。其中L. ferriphilum单独浸出时因其仅拥有铁代谢系统,无法移除黄铜矿表面累积的元素硫。混合菌浸出时,发现A. thiooxidans和L. ferriphilum的存在,能促进A. ferrooxidans对黄铜矿的浸出,并使得矿物表面生成的黄钾铁矾及元素硫减少,这可能是由于A. thiooxidans 的存在增加了体系的硫氧化活性,从而使得pH降  低,有效的抑制了黄钾铁矾的生成,同时更有效的消解表面元素硫层[21],使得黄铜矿的浸出持续进行,而L. ferriphilum进一步提高体系的铁氧化活性。


 

图3  黄铜矿原矿、空白浸出残渣及混合菌浸出残渣的组成分析

Fig.3  Composition analysis of original chalcopyrite (a), residue in sterile control experiment (b) and residue in bioleaching experiment with mixed bacteria (c)

 

图4  标准样品的硫的K边XANES光谱及样品拟合图谱

Fig.4  Normalized sulfur K-edge XANES spectra of standard samples (a) and fitted curve (b)

 

图5  A. Ferrooxidans、A. Thiooxidans和L. ferriphilum及混合菌作用下黄铜矿不同时间段硫K边XANES谱

Fig.5  XANES spectra of sulfur K-edge of chalcopyrite leached by A. ferrooxidans (a), A. thiooxidans (b), L. ferriphilum (c) and mixed bacteria (d)

表2  黄铜矿样品S K边XANES谱拟合结果

Table 2  Fitted results of S K-edge XANES spectra of measure sample with different reference spectra

 

 

A. f: A. ferrooxidans; A. t: A. thiooxidans; L. f: L. ferriphilum; Mix: mixture of A. ferrooxidans, A. thiooxidans and L. ferriphilum.



根据式(4),较高的三价铁离子浓度有利于黄铜矿的溶解。因此,较高的电位值应该有利于黄铜矿的浸出。然而,大量研究指出黄铜矿的溶出有一个最适的电位区间,也就是需要有一个合适的[Fe3+]/[Fe2+] 比值。本实验同样如此,如图2(a)和(b)所示,浸出第九天前,电位值小于400 mV,浸出速度较快,此后,浸出速度明显变慢,电位值迅速增加至540 mV。对这个现象,HIROYOSHI等[22]曾经提出过一个黄铜矿的两步氧化模型。根据这个模型,在较低的电位时黄铜矿首先被二价铁还原成更加易氧化分解的辉铜矿(方程(6))。同样,ARCE和GONZ?LEZ[23]以及VEL?SQUEZ等[24]都通过电化学方法证明了辉铜矿是黄铜矿酸性条件下氧化过程的可能中间产物。

CuFeS2 +3Cu2+ +3Fe2+ →2Cu2S + 4Fe3+          (6)

VILC?EZ和INOUE[25] 认为黄铜矿的溶解是由于反应方程(4)和方程(6)的综合作用,分别由初始的Fe2+和Fe3+浓度控制。在高浓度的Fe3+条件下黄铜矿的氧化作用占主导地位,在高浓度的Fe2+条件下黄铜矿的还原反应占优势地位。因此,本实验中在浸出初期均有辉铜矿生成,而当电位从400 mV 迅速上升到540 mV以后的持续浸出过程中,由于Fe2+快速被氧化为Fe3+,浸出体系中几乎没有还原作用,辉铜矿等次生硫化铜矿在高浓度的Fe3+氧化作用下快速被分解,使得浸出率继续提高。当电位达到540 mV后,根据方程(1),在高浓度的Fe3+存在下,黄钾铁矾极易形成,阻碍了黄铜矿继续溶出[26],导致浸出速率降低。这为黄铜矿的二步溶出理论提供了新的证据。

3  结论

1) 混合菌浸出时,体系的硫/铁氧化活性较单一菌浸出有明显提高,黄钾铁矾在实验中逐渐累积,是钝化作用的主要成分。

2) A. thiooxidans、L. ferriphilum的存在增加体系的硫氧化活性,从而使得pH降低,有效地抑制了黄钾铁矾的生成,同时更为有效地消解矿物表面积累的元素硫层,使铜离子浸出率明显提高。

3) 在浸出初期低于400 mV时,浸出速率较快,此后体系电位迅速增加到540 mV,浸出速率明显变慢,符合二步溶出模型。

4) 在浸出初期浸出体系中有辉铜矿产生,其中混合菌浸出时辉铜矿产量明显高于单一细菌浸出,这些可能是低电位条件下或混合菌浸出时黄铜矿浸出速率较高的关键因素。

REFERENCES

[1] DUTRIZAC J E. Factors affecting the precipitation of potassium jarosite in sulfate and chloride media[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2008, 39(6): 771-783.

[2] RODRIGUEZ Y, BALLESTER A, BLAZQUEZ M L, GONZALEZ F, MUNOZ J A. New information on the chalcopyrite bioleaching mechanism at low and high temperature[J]. Hydrometallurgy, 2003, 71(1/2): 47-56.

[3] BEVILAQUA D, LEITE A L L C, GARCIA J R. O, TUOVINEN O H. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J]. Process Biochemistry, 2002, 38(4): 587-592.

[4] SANDSTROM A, SHCHUKAREV A, PAUL J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential[J]. Minerals Engineering, 2005, 18(5): 505-515.

[5] SASAKI K, NAKAMUTA Y, HIRAJIMA T, TUOVINEN O H. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2009, 95(1/2): 153-158.

[6] ZHU W, XIA J L, YANG Y, NIE Z Y, ZHENG L, MA C Y, ZHANG R Y, PENG A A, TANG L, QIU G Z. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite[J]. Bioresource Technology, 2011, 102(4): 3877-3882.

[7] SCHIPPERS A, SAND W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur[J]. Applied and Environmental Microbiology, 1999, 65(1): 319-321.

[8] SASAKI K, TSUNEKAWA M, OHTSUKA T, KONNO H. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering[J]. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 1998, 133(3): 269-278.

[9] RAWLINGS D E, TRIBUTSCH H, HANSFORD G S. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J]. Microbiology-Sgm, 1999, 145(Part 1): 5-13.

[10] NAVA D, GONZALEZ I, LEINEN D, RAMOS-BARRADO J R. Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite[J]. Electrochimica Acta, 2008, 53(14): 4889-4899.

[11] IZQUIERDO-ROCA V, FONTANE X, SAUCEDO E, JAIME- FERRER J S, ?LVAREZ-GARC?A J, P?REZ-RODR?GUEZ A, BERMUDEZ V, MORANTE J R. Process monitoring of chalcopyrite photovoltaic technologies by Raman spectroscopy: an application to low cost electrodeposition based processes[J]. New Journal of Chemistry, 2011, 35(2): 453-460.

[12] HE H, XIA J L, YANG Y, JIANG H C, XIAO C Q, ZHENG L, MA C Y, ZHAO Y D, QIU G Z. Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis[J]. Hydrometallurgy, 2009, 99(1/2): 45-50.

[13] LIANG C L, XIA J L, ZHAO X J, YANG Y, GONG S Q, NIE Z Y, MA C Y, ZHENG L , ZHAO Y D, QIU G Z. Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis[J]. Hydrometallurgy, 2010, 105(1/2): 179-185.

[14] 杨 益. 极端嗜热菌Sulfolobus metallicus介导下硫元素形态与转化研究[D]. 长沙: 中南大学, 2010.
YANG Yi. The study on the speciation and transformation of elemental sulfur mediated by thermophile Sulfolobus metallicus[D]. Changsha: Central South University, 2010.

[15] KARAMANEV D G, NIKOLOV L N, MAMATARKOVA V. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions[J]. Minerals Engineering, 2002, 15(5): 341-346.

[16] 丁建南. 几种高温浸矿菌的分离鉴定及其应用基础与浸矿潜力研究[D]. 中南大学, 2008.
DING Jian-nan. Isolation, identification of thermophilic leaching microorganisms and basic studies on their application and bioleaching potential[D]. Central South University, 2008.

[17] MARHUAL N P, PRADHAN N, KAR R N, SUKLA L B, Mishra BK. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample[J]. Bioresource Technology, 2008, 99(17): 8331-8336.

[18] JOHNSON D B, GHAURI M A, SAID M F. Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron[J]. Applied and Environmental Microbiology, 1992, 58: 1423-1428.

[19] VIRAMONTES-GAMBOA G, RIVERA-VASQUEZ B F, DIXON D G. The active-passive behavior of chalcopyrite: Comparative study between electrochemical and leaching responses[J]. Journal of the Electrochemical Society, 2007, 154(6): 299-311.

[20] CRUNDWELL F K. How do bacteria interact with minerals?[J]. Hydrometallurgy, 2003, 71(1/2): 75-81.

[21] LARA R H, VALDEZ-PEREZ D, RODRIGUEZ A G, NAVARRO-CONTRERAS H R, CRUZ R, GARC?A-MEZA J V. Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions[J]. Hydrometallurgy, 2010, 103(1/4): 35-44.

[22] HIROYOSHI N, MIKI H, HIRAJIMA T, TSUNEKAWA M. A model for ferrous-promoted chalcopyrite leaching[J]. Hydrometallurgy, 2000, 57(1): 31-38.

[23] ARCE E A, GONZALEZ I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution[J]. International Journal of Mineral Processing, 2002, 67(1/4): 17-28.

[24] VELASQUEZ P, LEINEN D, PASCUAL J, RAMOS- BARRADO J R, GREZ P, G?MEZ H, SCHREBLER R, DEL R?O R, C?RDOVA R. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions[J]. Journal of Physical Chemistry B, 2005, 109(11): 4977-4988.

[25] VILCAEZ J, INOUE C. Mathematical modeling of thermophilic bioleaching of chalcopyrite[J]. Minerals Engineering, 2009, 22(11): 951-960.

[26] VILCAEZ J, SUTO K, INOUE C. Bioleaching of chalcopyrite with thermophiles: Temperature-pH-ORP dependence[J]. International Journal of Mineral Processing, 2008, 88(1/2): 37-44.

(编辑 李艳红)

 


摘  要:比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV (vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。

[1] DUTRIZAC J E. Factors affecting the precipitation of potassium jarosite in sulfate and chloride media[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2008, 39(6): 771-783.

[2] RODRIGUEZ Y, BALLESTER A, BLAZQUEZ M L, GONZALEZ F, MUNOZ J A. New information on the chalcopyrite bioleaching mechanism at low and high temperature[J]. Hydrometallurgy, 2003, 71(1/2): 47-56.

[3] BEVILAQUA D, LEITE A L L C, GARCIA J R. O, TUOVINEN O H. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J]. Process Biochemistry, 2002, 38(4): 587-592.

[4] SANDSTROM A, SHCHUKAREV A, PAUL J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential[J]. Minerals Engineering, 2005, 18(5): 505-515.

[5] SASAKI K, NAKAMUTA Y, HIRAJIMA T, TUOVINEN O H. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2009, 95(1/2): 153-158.

[6] ZHU W, XIA J L, YANG Y, NIE Z Y, ZHENG L, MA C Y, ZHANG R Y, PENG A A, TANG L, QIU G Z. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite[J]. Bioresource Technology, 2011, 102(4): 3877-3882.

[7] SCHIPPERS A, SAND W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur[J]. Applied and Environmental Microbiology, 1999, 65(1): 319-321.

[8] SASAKI K, TSUNEKAWA M, OHTSUKA T, KONNO H. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering[J]. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 1998, 133(3): 269-278.

[9] RAWLINGS D E, TRIBUTSCH H, HANSFORD G S. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J]. Microbiology-Sgm, 1999, 145(Part 1): 5-13.

[10] NAVA D, GONZALEZ I, LEINEN D, RAMOS-BARRADO J R. Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite[J]. Electrochimica Acta, 2008, 53(14): 4889-4899.

[11] IZQUIERDO-ROCA V, FONTANE X, SAUCEDO E, JAIME- FERRER J S, ?LVAREZ-GARC?A J, P?REZ-RODR?GUEZ A, BERMUDEZ V, MORANTE J R. Process monitoring of chalcopyrite photovoltaic technologies by Raman spectroscopy: an application to low cost electrodeposition based processes[J]. New Journal of Chemistry, 2011, 35(2): 453-460.

[12] HE H, XIA J L, YANG Y, JIANG H C, XIAO C Q, ZHENG L, MA C Y, ZHAO Y D, QIU G Z. Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis[J]. Hydrometallurgy, 2009, 99(1/2): 45-50.

[13] LIANG C L, XIA J L, ZHAO X J, YANG Y, GONG S Q, NIE Z Y, MA C Y, ZHENG L , ZHAO Y D, QIU G Z. Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis[J]. Hydrometallurgy, 2010, 105(1/2): 179-185.

[14] 杨 益. 极端嗜热菌Sulfolobus metallicus介导下硫元素形态与转化研究[D]. 长沙: 中南大学, 2010.YANG Yi. The study on the speciation and transformation of elemental sulfur mediated by thermophile Sulfolobus metallicus[D]. Changsha: Central South University, 2010.

[15] KARAMANEV D G, NIKOLOV L N, MAMATARKOVA V. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions[J]. Minerals Engineering, 2002, 15(5): 341-346.

[16] 丁建南. 几种高温浸矿菌的分离鉴定及其应用基础与浸矿潜力研究[D]. 中南大学, 2008.DING Jian-nan. Isolation, identification of thermophilic leaching microorganisms and basic studies on their application and bioleaching potential[D]. Central South University, 2008.

[17] MARHUAL N P, PRADHAN N, KAR R N, SUKLA L B, Mishra BK. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample[J]. Bioresource Technology, 2008, 99(17): 8331-8336.

[18] JOHNSON D B, GHAURI M A, SAID M F. Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron[J]. Applied and Environmental Microbiology, 1992, 58: 1423-1428.

[19] VIRAMONTES-GAMBOA G, RIVERA-VASQUEZ B F, DIXON D G. The active-passive behavior of chalcopyrite: Comparative study between electrochemical and leaching responses[J]. Journal of the Electrochemical Society, 2007, 154(6): 299-311.

[20] CRUNDWELL F K. How do bacteria interact with minerals?[J]. Hydrometallurgy, 2003, 71(1/2): 75-81.

[21] LARA R H, VALDEZ-PEREZ D, RODRIGUEZ A G, NAVARRO-CONTRERAS H R, CRUZ R, GARC?A-MEZA J V. Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions[J]. Hydrometallurgy, 2010, 103(1/4): 35-44.

[22] HIROYOSHI N, MIKI H, HIRAJIMA T, TSUNEKAWA M. A model for ferrous-promoted chalcopyrite leaching[J]. Hydrometallurgy, 2000, 57(1): 31-38.

[23] ARCE E A, GONZALEZ I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution[J]. International Journal of Mineral Processing, 2002, 67(1/4): 17-28.

[24] VELASQUEZ P, LEINEN D, PASCUAL J, RAMOS- BARRADO J R, GREZ P, G?MEZ H, SCHREBLER R, DEL R?O R, C?RDOVA R. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions[J]. Journal of Physical Chemistry B, 2005, 109(11): 4977-4988.

[25] VILCAEZ J, INOUE C. Mathematical modeling of thermophilic bioleaching of chalcopyrite[J]. Minerals Engineering, 2009, 22(11): 951-960.

[26] VILCAEZ J, SUTO K, INOUE C. Bioleaching of chalcopyrite with thermophiles: Temperature-pH-ORP dependence[J]. International Journal of Mineral Processing, 2008, 88(1/2): 37-44.