中国有色金属学报

DOI: 10.11817/j.ysxb.1004.0609.2021-40017

锂离子电池LiLa0.02Mn1.98O4正极材料的合成及电化学性能

李  燕1, 2,陶  扬1, 2,白红丽1, 2,白  玮1, 2,向明武1, 2,郭俊明1, 2

(1. 云南民族大学 生物基材料绿色制备技术国家地方联合工程研究中心,昆明 650500;

2. 云南民族大学 云南省高校绿色化学材料重点实验室,昆明 650500)

摘 要:

采用液相无焰燃烧法制备单晶多面体LiLa0.02Mn1.98O4材料,通过X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安(CV)、交流阻抗(EIS)等测试分析材料的电化学性能。结果表明:掺杂La3+没有改变LiMn2O4的尖晶石结构。在25 ℃、1C和5C倍率条件下,LiLa0.02Mn1.98O4初始放电比容量分别为112.7和94.5mA·h/g,循环500次后,LiLa0.02Mn1.98O4的容量保持率为64.42%和81.45%,而LiMn2O4样品的容量保持率分别为53.69%和56.9%;特别是在10C高倍率下,LiMn2O4样品的初始放电比容量仅有44.7 mA·h/g,同样条件下,LiLa0.02Mn1.98O4首次放电比容量达73.5 mA·h/g,循环500次后,容量保持率为81.09%。CV和EIS测试发现,掺杂后的材料有较好的循环可逆性,较大的锂离子扩散系数1.04×10-16 cm2/s,对循环2000次后的极片进行分析,材料的晶体结构和颗粒形貌基本没有变化,适量的La掺杂能够稳定材料的晶体结构,有效抑制Jahn-Teller,提高材料的循环性能。

关键词:

尖晶石型LiMn2O4镧掺杂去顶角八面体锂离子电池正极材料

文章编号:1004-0609(2021)-08-2198-12       中图分类号:TM912       文献标志码:A

引文格式:李  燕, 陶  扬, 白红丽, 等. 锂离子电池LiLa0.02Mn1.98O4正极材料的合成及电化学性能[J]. 中国有色金属学报, 2021, 31(8): 2198-2209. DOI: 10.11817/j.ysxb.1004.0609.2021-40017

LI Yan, TAO Yang, BAI Hong-li, et al. Synthesis and electrochemical performance of LiLa0.02Mn1.98O4 cathode material for lithium ion battery[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2198-2209. DOI: 10.11817/j.ysxb.1004.0609.2021-40017

尖晶石型LiMn2O4具有原料成本低且储量丰富、合成工艺简单、热稳定性好等优点,成为最具发展潜力的锂离子电池正极材料之一,但是LiMn2O4仍存在循环稳定性差,容量衰减较快[1]。其原因主要归纳为:1) Jahn-Teller效应引起的结构畸变;2) 锰的溶解;3) 电解液在高电位下分解和极化增强;4) 氧缺陷[2-3]。研究者通过元素掺杂、表面包覆、改善合成工艺和控制合成材料的形貌以改善LiMn2O4电化学性能。其中,元素掺杂是取代LiMn2O4材料中部分Mn3+,抑制Jahn-Teller效应,改善LiMn2O4晶体结构稳定性,从而提高循环寿命的有效方法,但掺杂后会牺牲LiMn2O4部分放电比容量[4]。常见的掺杂元素如Al[5]、Ni[6]、La[7]、Cu[8]、Mg[9]等,其中,La3+的离子半径1.03 nm大于Mn3+的离子半径0.65 nm,La3+可以取代LiMn2O4结构中的Mn3+,有效地缓解电极材料中由于其Jahn-Teller效应引起的晶格变形[10],改善了尖晶石型LiMn2O4的结构稳定性,提高LiMn2O4材料的循环稳定性。SUN等[7]制备的LiLa0.05Mn1.95O4正极材料,在1C时循环100次,与相同条件下制备的LiMn2O4相比,初始放电比容量降低6.1 mA·h/g,但容量保持率由77%提升至91.6%,表明La3+掺杂可以有效地降低Jahn-Teller效应,稳定其晶体结构,提高其循环稳定性[11-12]

此外,研究者通过控制单晶颗粒形貌降低Mn3+的溶解,提高Mn4+的结构优势成为热点[13],为此,基于材料形态和晶体结构设计,合成具有特殊单晶形貌结构的尖晶石型LiMn2O4是最有效的途径之一。KIM等[14]先合成去顶角八面体形貌的前驱体Mn3O4,再与锂源LiOH·H2O进行固相反应,得到具有(111)、(110)和(100)晶面的去顶角八面体LiMn2O4,(111)晶面与(110)、(100)晶面相比锰原子排列更为紧密,最不容易遭受锰溶解,并在去顶角八面体结构中起着改善循环稳定性的作用;而小部分被截断的(110)、(100)晶面表面能较高,较易遭受锰的溶解[15],但其晶面取向与Li+扩散通道一致,能加快锂离子扩散速率,改善材料的倍率性能和循环性能,因此,单晶LiMn2O4晶面取向不仅与锰的溶解有关,也与锂离子扩散通道相关[16-17]。HUANG等[18]先制备去顶角八面体形貌的MnCO3前驱体,采用固相法合成相应形貌的LiMn2O4,25 ℃,5C倍率下循环1000次容量保持率达86.7%,获得了优异的倍率性能和循环性能。LI等[19]采用固相法在900 ℃下焙烧12 h合成了去顶角八面体LiMn2O4正极材料,在10C倍率下其放电容量为90 mA·h/g,高于正八面体LiMn2O4 (60 mA·h/g)的放电容量。这些研究结果表明,所合成的去顶角八面体结构材料提高了尖晶石型LiMn2O4的倍率性能以及循环性能。

目前,制备去顶角八面体或多面体形貌的LiMn2O4合成工艺复杂,热处理时间过长,大多数采用模板法制备相应形貌前驱体。本课题组曾采用简便快速的液相无焰燃烧法合成了具有单晶多面体形貌的尖晶石型LiMn2O4[20],获得了优异的电化学性能。根据目前所报道的文献来看,镧掺杂的研究较多,但未见探索La掺杂单晶多面体LiMn2O4电化学性能的研究。本研究结合掺杂和控制单晶去顶角八面体形貌的方法,采用液相无焰燃烧法制备多面体LiLa0.02Mn1.98O4,详细研究了掺杂La3+对尖晶石型LiMn2O4晶体结构、形貌、电化学性能以及动力学性能的影响。

1  实验

1.1  试剂与仪器

硝酸锂(99.9%,LiNO3)、乙酸锰(99%,Mn(CH3COO)2·4H2O)、醋酸镧(99.99%,La(CH3COO)2·xH2O)和N-甲基吡咯烷酮(NMP,AR)均购于上海阿拉丁生化科技股份有限公司),聚偏氟乙烯(PVDF,电池级)购于美国西格玛奥德里奇公司,硝酸(HNO3,AR)购于成都市科龙化工厂。

XRD为D8 advance型(以Cu Kα为辐射源,λ= 0.15435 nm,扫描速度为12 (°)/min,扫描范围为10°~80°)购于德国Bruker公司;SEM为Nova NanoSEM-450型,购于美国FEI公司;BET为ASAP 2460,购于美国麦克仪器公司;TEM型号为JEM- 2100,购于日本JEOL公司;PHI5000 Versaprobe-Ⅱ型X射线光电子能谱仪(XPS),购于日本Ulvac-Phi公司;MIKROUNA Super型真空手套箱,购于上海米开罗那机电技术有限公司;CHI660E电化学工作站购于上海辰华仪器有限公司,蓝电(LAND)电池测试系统(CT2001A)购于武汉蓝电电子有限公司。

1.2  样品制备

1.2.1  LiMn2O4和LiLa0.02Mn1.98O4正极材料的制备

以LiNO3为锂源,以Mn(CH3COO)2·4H2O和La(CH3COO)2·xH2O为锰源和镧源,按照目标产物LiMn2O4和LiLa0.02Mn1.98O4化学计量比配料,分别准确称取硝酸锂、乙酸锰和醋酸镧,置于300 mL坩埚中,外加9 mol/L的HNO3作为辅助氧化剂,在微波氛围下加热30 s,得到均匀的溶液,置于马弗炉中在500 ℃空气氛围无焰燃烧反应1 h,得到黑色的蓬松状产物,取出后自然冷却至室温,充分研磨,称取1.0 g再次放入700 ℃马弗炉中,进行二次焙烧6 h,再在空气氛围自然冷却、研磨得到最终产物LiMn2O4(LMO)和LiLa0.02Mn1.98O4(LLMO)正极材料。

1.2.2  电化学性能测试

将所合成的活性物质于真空环境干燥12 h,按照8:1:1的质量比准确称量活性物质、乙炔炭黑、聚偏氟乙烯,加入适量NMP作为溶剂后混合均匀,在自动涂膜烘干机上将所得到的浆料均匀的涂布在铝箔上。放置在80 ℃鼓风干燥箱中干燥4 h,再剪裁成直径为16 mm的正极圆片。Celgard2320 (聚丙烯多孔膜)为隔膜,1 mol/L的LiPF6 (EC、DMC、EMC体积比为1:1:1)溶液作为电解液,以金属锂片为负极,在手套箱中组装成CR2032型扣式电池。电化学性能测试方法包括恒流充-放电循环测试(电压范围为3.0~4.5 V)、循环伏安(CV)测试以及电化学阻抗谱(EIS)测试。

2  结果与讨论

2.1  XRD谱分析

图1所示为所合成材料LMO和LLMO的XRD谱。可以看出,LLMO材料所有的特征衍射峰都与尖晶石型LMO(JCPDS No.35-0782)相一致,表明La3+进入尖晶石型LiMn2O4结构中,且没有改变尖晶石结构,仍属于Fd3m空间群[21]。表1所列为两个样品的晶胞参数,掺杂La后样品的晶格常数比LMO样品的小。这是由于掺杂La后,Mn的平均化合价增加,Mn3+含量小于Mn4+,且r(Mn3+)>r(Mn4+),导致晶胞收缩。此外,La—O键能(799 kJ/mol)大于Mn—O(402 kJ/mol)键能[7],具有更高的八面体择位能,使得键长减小,晶胞收缩[22]。同时,(400)峰的FWHM也减小,LLMO样品的I(311)/I(400)比值更接近1[23],表明掺入La3+能提高LMO材料的结晶性,稳固LiMn2O4八面体的结构稳定性,降低其晶格扭曲度。

图1  LMO和LLMO样品XRD谱

Fig. 1  XRD patterns of LMO and LLMO

表1  LMO和LLMO样品晶胞参数

Table 1  Cell parameters of LMO and LLMO samples

2.2  形貌分析

图2(a)和(b)所示分别为LMO与LLMO的SEM像。从图2中可以看出两种样品均为多面体形貌,LLMO材料粒径180 nm小于LMO的260 nm,这就缩短了Li+的扩散路径。且LLMO去顶角八面体轮廓更为清晰,颗粒粒径较小,尺寸大小更为均一,有利于加快锂离子扩散速率,改善倍率性能[24]

图2  LMO和LLMO样品的SEM像

Fig. 2  SEM images of LMO(a) and LLMO(b)

图3(a)和(b)所示为LMO和LLMO材料的氮气吸附-脱附等温线,用以分析和研究所制备材料的孔径分布和比表面积。根据IUPAC的定义,图中氮气吸附-脱附等温线可以归属为II型曲线[25]。在图3(a)和(b)曲线的相对分压(p/p0) 0.1~0.9范围内未观察到迟滞环,说明氮气是在非孔介质表面上吸附-脱附。根据BET分析,LMO的比表面积(2.63 m2/g)小于掺杂后LLMO样品比表面积(4.76 m2/g),表明La掺杂可以在一定程度上减小材料的平均颗粒尺寸,这与SEM结果一致。此外,材料比表面积的增加使得活性物质与电解液之间的接触面积增加,这有利于Li+的扩散,提升了材料的倍率性能[26]

为了进一步探索合成样品的形貌,TEM和HRTEM测试结果如图4(a)~(d)所示,可以看出样品为多面体形貌,颗粒大小在150~280 nm之间,属于亚微米颗粒,其中LLMO样品粒径分布更为均匀,结晶度更高,这与XRD、SEM结果相一致。高分辨透射电镜可以看出,LMO的(111)晶面的晶面间距为0.476 nm。插图对应于选区电子衍射(SAED)图案,这些衍射斑点归属于立方尖晶石型LMO的(440)和(400)晶面。然而,LLMO为0.468 nm(见图4(d)),这可能是La3+的掺杂导致晶格收缩[27],其插图的SAED图谱对应的晶面分别为(220)、(111),衍射斑点清晰明亮、规则,表明LLMO为单晶结构且有高结晶性。

图3  LMO和LLMO样品的氮气吸附-脱附等温曲线和BJH孔隙宽度吸附分布图

Fig. 3  Adsorption/desorption curves of samples LMO(a) and LLMO(b), respectively (Inset figure is corresponding BJH picture)

图4  LMO和LLMO样品的TEM像和HRTEM像(插图是对应的SAED谱)

Fig. 4  TEM((a), (b)) and HRTEM((c), (d)) images of LMO((a), (c)) and LLMO((b), (d)), respectively (Inset figures are corresponding SAED patterns)

2.3  XPS图谱分析

为了进一步分析LLMO掺杂材料的表面化学成分及Mn、La价态。图5(a)所示为LLMO的XPS全谱图,谱图中检测到C 1s、O 1s、Mn 2p、Li 1s、La 3d的特征谱线,表明合成材料中含有O、Mn、Li和La 4种元素。运用XPS peak软件对检测到的La 3d的特征谱线进行分峰拟合如图5(b)所示,分别属于La 3d3/2和La 3d5/2对应的结合能分别为833.12 eV和849.55 eV,两个峰之间的结合能△E=16.69 eV,说明掺入LiMn2O4晶格中的La元素以La3+离子的形式存在[12]。为了更好地分析LMO和LLMO样品中Mn3+和Mn4+的相对含量,对Mn 2p峰进一步拟合,拟合结果如图5(c)所示,在640.00、651.38 eV处存在Mn3+特征峰,在641.50、652.68 eV处有Mn4+特征峰,表明Mn以Mn3+和Mn4+形态存在[28]。LLMO材料Mn3+含量48.79%低于LMO材料的50%。与LMO样品相比,掺杂La3+后,Mn含量比(1.05)和平均氧化态(3.51)略有增加,有利于抑制Jahn-Teller畸变,改善材料的倍率性能和循环性能。

图5  LLMO样品的XPS谱

Fig. 5  XPS of LLMO sample

2.4  循环性能分析

图6(a)所示为两个样品的倍率性能图,可以明显看到1C时样品的放电比容量相近,但随着倍率的增加,LLMO材料表现出更加优异的性能,特别是10C下,LMO材料的初始放电比容量仅有44.8 mA·h/g,而LLMO的样品仍然有77.4 mA·h/g的放电比容量,且10C放电后,依然能回到原来1C的放电比容量,具有较好的可逆性。这主要归因于所合成样品的去顶角八面体具有较多的{111}面和特定的{110}、{100}面,其中{111}面原子排列最为紧密,锰溶解最少,而{110}、{100}面与锂离子扩散通道一致,使得材料的倍率性能显著提高[29]。图6(b)所示为1C倍率下LMO和LLMO样品的首次充放电曲线,两个样品均有两个特征电压平台,对应于尖晶石型LMO的两步锂离子脱嵌过程[6]。与LMO相比,LLMO样品的首次放电比容量略有减小,这归因于掺杂La3+会替代部分Mn3+,降低尖晶石型LiMn2O4材料初始比容量。

图6  LMO和LLMO样品的倍率性能图和1C倍率下首次充放电曲线

Fig. 6  Rate performance of LMO and LLMO samples(a) and initial charge-discharge curves of LMO and LLMO at 1C(b)

图7(a)所示为LMO和LLMO在1C和25 ℃条件下的循环性能图,两者初始放电比容量分别为115.6和112.7 mA·h/g,与LMO相比,LLMO材料初始比容量仅降低2.9 mA·h/g,在经过500次循环后,LLMO材料容量保持率为64.42%,高于LMO材料的53.69%。图7(b)所示为LMO和LLMO样品在5C的循环性能图。从图中可以明显地看出,在高倍率5C时掺杂样品有较高的放电比容量(94.5 mA·h/g)和容量保持率(81.48%),明显优于ARUMUGAM等[30]采用固相法合成的LiLa0.05- Mn1.95O4正极材在5C倍率循环50次容量保持率85.23%。为了探究更高材料在更高倍率下的电化学性能。测试了更高倍率10C下的高倍率性能和循环性能,探究掺杂样品的循环稳定性如图7(c)所示,从图7(c)中看出,LLMO样品的初始放电比容量明显高于未掺杂样品,其首次放电比容量为73.5 mA·h/g,在循环500次后,仍然有59.6 mA·h/g,而LMO样品的首次放电比容量仅为44.7 mA·h/g,循环500次后,容量仅有37.9 mA·h/g。基于以上研究,可以看出,掺杂适量的La3+能有效提高其容量保持率,这是由于La3+取代尖晶石LMO结构中八面体16d位置上的部分Mn3+,通过降低Mn3+含量来提高锰的平均价态,以抑制Jahn-Teller效应、稳定晶体结构,减小材料中的迁移内阻,从而改善电化学性能。

图7  LMO和LLMO样品在1C、5C、10C的循环性能图

Fig. 7  Cyclic performances of LMO and LLMO samples at different discharge rates

2.5  动力学性能分析

图8所示为LMO和LLMO电极在25 ℃、5C倍率下充放电循环前和2000次循环后的CV曲线,扫描电压为3.6~4.5 V (vs Li/Li+),扫描速度为0.1 mV/s。从图中可发现,材料都存在两对氧化还原峰,对应锂离子的两步脱嵌-嵌入过程。LMO电极首次CV曲线的峰值电流大于LLMO,这与图7(a)中LMO的初始放电比容量略高于LLMO结果相符,但是经过2000次超长循环后,LLMO材料与循环前相比,氧化还原峰对称,峰电位差小,峰值电流、峰面积变化不大,表明其具有较小的电极极化和较高的比容量,而LMO样品的氧化还原峰出现明显的位移,电位差较大,峰面积显著减小,表明LMO正极材料的极化程度大,循环可逆性较差。结果表明,La3+掺杂降低了材料的电化学极化率,提升了材料的电化学可逆性,从而提高了样品的循环稳定性。

图8  LMO样品和LLMO样品5C倍率下循环2000次的循环伏安曲线

Fig. 8  CV curves of LMO and LLMO samples before cycle(a) and after 2000 cycles at 5C(b)

为了更加深入探索LLMO材料的倍率性能以及循环性能优于LMO的原因,对合成样品进行了EIS测试(频率范围为10 mHz~100 kHz)。图9(a)和(b)所示分别为LMO和LLMO样品未循环前和5C倍率下2000次超长循环后的Nyquist曲线。采用Zview对LMO和LLMO样品电化学阻抗进行拟合,劣弧左侧与横轴的交点到原点的距离表示溶液电阻Rs,半圆表示电荷转移电阻Rct和双电层电容CPE,低频区的直线则表示Li+在尖晶石LMO晶格结构中的扩散过程,即Warburg阻抗,其大小与Li+在材料中的扩散过程有关。如图9所示,分别计算了LMO和LLMO样品等效电路图中的电荷转移电阻(Rct)和溶液电阻(Rs)见表2。从表2可以看出,循环前掺杂La3+的样品Rct值减小,表明掺杂可以减小Li+在电极-电极界面转移的阻碍,有利于Li+的嵌入与脱嵌,改善了电极动力学性能,使材料具有优异的高倍率性能[31-32]。经过2000次长循环后,LMO和LLMO的Rct值分别减小到200.6和141.2 Ω,这是由于循环后锂离子在电极中活化,导致Rct减小[33-34]。如表2所列,相较于LMO样品,LLMO样品在循环前和2000次循环后均表现出更低的Rct值和△Rct,以及更小变化的△Rs,说明LLMO电极电荷转移速率更快,倍率性能更优异。

图9  25 ℃下LMO和LLMO样品循环前和5C倍率循环2000次的奈奎斯特图(插图是Nyquist图的等效电路图和Z′与ω-1/2关系图)

Fig. 9  Nyquist plots of LMO(a) and LLMO(b) samples before cycle and after 2000 cycles at 5C and 25 ℃ (Inset figure is equivalent circuit model of EIS and Nyquist plots of relationship between Z′ and ω-1/2)

表2  以等效电路图拟合得到的阻抗拟合参数

Table 2  Fitting parameters of electrochemical impedance obtained by fitting equivalent circuit diagram

通过EIS在低频区的数据计算Li+的扩散系数DLi+,公式表达式为[35]

                (1)

                      (2)

式中:R为气体常数(8.314 J·mol/K);T是绝对温度;A是电极的表面积;n是电子转移数;F代表法拉第常数(96484.5 C/mol);Li+在电极中的体积浓度表示为C(0.02378 mol/L);σw为Warburg常数;Z′为实部的阻抗(Ω);Rs为电解液阻抗(Ω);Rct为电荷转移阻抗(Ω);ω为在低频区的角频率。通过作Z′与ω-1/2的关系如图9插图所示,结合上述关系式就可计算得到Li+的扩散系数DLi+。计算得出LMO样品的DLi+=8.97×10-17 cm2/s,而LLMO样品的DLi+= 1.04×10-16 cm2/s。这主要由两个方面的原因:1) 合成具有(100)、(110)晶面的去顶角八面体,以支持锂离子扩散;2) La3+掺杂后能够稳定尖晶石LMO的晶体结构,提高Li+在尖晶石型LMO内的扩散速率,从而提高其倍率性能。

2.6  循环后结构、形貌分析

为了更进一步探究掺杂La3+对正极材料结构稳定性的影响,将两种正极材料进行2000次超长循环后,与循环前的极片进行XRD对比分析,如图10所示。将样品同一晶面循环后的衍射峰强度与循环前的衍射峰强度比值R列于表3。可以看出,在5C倍率下2000次循环后,LMO样品的衍射峰强度大幅度减小。循环后的(111)晶面衍射峰强度降低到之前的31%。而LLMO的正极材料,经过2000次循环后各个特征峰峰形强度保持良好,其比值R降低较少,其中(311)和(400)晶面则基本不变。证明掺杂La3+有效抑制了Jahn-Teller效应,提高了材料的晶体结构稳定性,从而改善了材料的电循环稳定性。

为进一步研究循环后正极材料颗粒形貌的变化情况,对循环后的极片进行SEM分析。从图11中可看出,LMO的颗粒大小不均一,晶体形貌不清晰,而LLMO样品仍具有清晰的多面体轮廓,粒径分布较窄且颗粒尺寸与循环前相比变化较小,与XRD结果相一致。这表明掺杂La3+离子可以使尖晶石型LMO的晶体结构更加稳定,有效地抑制Jahn-Teller效应,提高材料的电化学稳定性。

图10  LMO和LLMO样品在5C倍率下循环2000次的XRD谱

Fig. 10  XRD patterns of LMO(a) and LLMO(b) samples after 2000 cycles at 5C

表3  为循环前后不同晶面衍射峰强度比

Table 3  Ratio of diffraction peak intensity of crystal plane before and after cycles

通过XPS测试了5C倍率下2000次循环后LMO和LLMO极片中的Mn化学价态的变化。对LMO和LLMO材料的Mn 2p3/2进行分峰拟合如图12(a)和(b)所示,LMO样品中Mn3+相对含量从循环前50.15%减小至36.81%,而LLMO材料循环后Mn3+含量仍有45.33%,其保持了较高的Mn3+含量,LMO材料Mn3+的含量远小于LLMO的,表明在循环过程中LMO材料的歧化反应导致的Mn3+溶解更为严重,因此后期的放电容量相对较低。Mn 2p3/2结合能在2000次循环后几乎保持不变,表明掺杂La3+稳定了LMO晶体结构,抑制了Mn的溶解,同时,所合成的去顶角八面体LLMO具有最不易受锰溶解的(111)晶面,暴露在电解介质中形成SEI膜,抵抗Mn溶解,改善了LMO正极材料的电化学性能[27]

图11  5C倍率下循环2000次LMO和LLMO的SEM像

Fig. 11  SEM images of LMO(a) and LLMO(b) after 2000 cycles at 5C

图12  LMO和LLMO样品在5C倍率循环2000次的Mn 2p3/2峰的XPS拟合图谱

Fig. 12  XPS spectrum of Mn 2p3/2 peaks of LMO(a) and LLMO(b) after 2000 cycles at 5C

3  结论

1) 采用液相无焰燃烧法合成了立方尖晶石结构的LiLa0.02Mn1.98O4(LLMO)正极材料,该材料具有{111}、{110}和{100}晶面的单晶去顶角八面体,其颗粒粒径约180 nm。相较于LiMn2O4(LMO),具有更加良好的结构稳定性和电化学性能。

2) 在(25 ℃, 1C)时LLMO材料首次放电比容量为112.7 mA·h/g,循环500次后容量保持率为64.42%,在5C和10C倍率下,初始比容量分别为94.5和73.5 mA·h/g,经过500次循环后,容量保持率分别为81.4%和81.09%,倍率性能显著提高。CV测试结果表明,LLMO正极材料的极化程度更小,循环可逆性更好。EIS测试结果表明,掺杂La3+可以降低材料的Rct,增大Li+扩散系数,改善电极动力学性能。

3) 对5C倍率下循环2000次后的极片进行表征,其仍具有尖晶石型LMO的全部衍射峰,且衍射峰强度比LMO强得多,仍能观察到多面体颗粒形貌,表明掺La3+后尖晶石型LMO材料晶体结构稳定性增强,有效缓解了Jahn-Teller效应,抑制了Mn的溶解,从而使材料具有良好的循环稳定性和倍率性能。

REFERENCES

[1] CHEN Qi-chao, YAN Guan-jie, LUO Li-ming, et al. Enhanced cycling stability of Mg-F co-modified LiNi0.6Co0.2Mn0.2-yMgyO2-zFz for lithium-ion batterie[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7): 1397-1403.

[2] 冯福山, 方海升, 杨 斌, 等. 升温速率对高电正极材料LiNi0.5Mn1.5O4晶粒形貌及电化学性能的影响[J].中国有色金属学报, 2016, 26(2): 347-353.

FENG Fu-shan, FANG Hai-sheng, YANG Bin, et al. Effect of heating rate on crystal morphology and electrochemical performance of high voltage cathode materialLiNi0.5Mn1.5O4[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 347-353.

[3] ZHAN C, WU T P, LU J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes a critical review[J]. Energy and Environmental Science, 2018, 11, 243-257.

[4] ZUO C J, HU Z X, QI R, et al. Double the capacity of manganese spinel for lithium on storage by suppression of cooperative Jahn-Teller distortion[J]. Advanced Energy Materials, 2020: 2000363

[5] PENG C C, HUANG J J, GUO Y J, et al. Electrochemical performance of spinel LiAlxMn2-xO4 prepared rapidly by glucose-assisted solid-state combustion synthesis[J]. Vacuum, 2015, 120: 121-126.

[6] ZHU J Y, LIU Q, XIANG M W, et al. Facile synthesis of truncated octahedron LiNi0.10Mn1.90O4 for high-performance Li ion batteries[J]. Ceramics International, 2020, 46: 14516-14522.

[7] SUN H B, CHEN Y G, XU C H, et al. Electrochemical performance of rare earth doped LiMn2O4 spinel cathode materials for Li-ion rechargeable battery[J]. Solid State Electrochem, 2012, 16: 1247-1254.

[8] WANG S M, LIU H L, XIANG M W, et al. Improved electrochemical properties and kinetics of LiMn2O4-based cathode co-modified via Cu-doping and truncated octahedron[J]. New Journal Chemistry, 2020, 44: 10569-10577.

[9] HUANG J J, YANG F L, GUO Y J, et al. LiMgxMn2-xO4 (x≤0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature[J]. Ceramics International, 2015, 41(8): 9662-9667.

[10] BI L N, LI X Y, LIU X Q, et al. Enhanced cycling stability and rate capability in La-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries[J]. ACS Sustainable Chemistry & Engineering. 2019, 7(8): 7693-7699.

[11] 汪 涛, 彭 文, 王启岁, 等. 基于La掺杂固相法合成LiNi0.5Mn1.5-xLaxO4及其性能研究[J]. 稀土, 2017, 38(5): 8-14.

WANG Tao, PENG Wen, WANG Qi-sui, et al. Effect of La doping on performance of LiNi0.5Mn1.5-xLaxO4 high volt materials[J]. Chinese Rare Earth, 2017, 38(5): 8-14.

[12] ZHU C Y, LIU J X, YU X H, et al. Boosting the stable Li storage performance in one-dimensional LiLaxMn2-xO4 nanorods at elevated temperature[J]. Ceramics International, 2019, 45: 19351-19359.

[13] ZHOU S Y, MEI T, WANG X B, et al. Crystal structural design of exposed planes: Express channels, high-rate capability cathodes for lithium-ion batteries[J]. Nanoscale, 2013, 10: 1039.

[14] KIM J S, KIM K S, CHO W, et al. A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries[J]. Nano Letters, 2012, 12(12): 6358-6365.

[15] BENEDEK R, THACKERAY M M. Simulation of the surface structure of lithium manganese oxide spinel[J]. Physical Review B, 2011, 83(19): 195439.

[16] HOSONO E, KUDO T, HONMA I, et al. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density[J]. Nano Letters, 2009, 9(3): 1045-1051.

[17] YANG C X, DENG Y F, GAO M, et al. High-rate and long-life performance of a truncated spinel cathode material with off-stoichiometric composition at elevated temperature[J]. Electrochimica Acta, 2017, 225: 198-206.

[18] HUANG S S, WU H, CHEN P H, et al. Facile pH-mediated synthesis of morphology-tunable MnCO3 and their transformation to truncated octahedral spinel LiMn2O4 cathode materials for superior lithium storage[J]. Journal of Materials Chemistry A, 2015, 3(7): 3633-3640.

[19] LI S Y, XIE J, ZHAO D N, et al. Morphological evolution of spinel disordered LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries by modified solid-state method[J]. Ionics, 2019, 25(5): 1999–2006.

[20] DUAN Y Z, GUO J M, XIANG M W, et al. Single crystalline polyhedral LiNixMn2-xO4 as high-performance cathodes for ultralong cycling lithium-ion batteries[J]. Solid State Ionics, 2018, 326: 100-109.

[21] 李 实, 梁树全, 曹鑫鑫, 等. xLi3V2(PO4)3·LiVPO4F/C复合正极材料的合成及储锂性能[J]. 中国有色金属学报, 2019, 29(1): 91-99.

LI Shi, LIANG Shu-quan, CAO Xin-xin, et al. Preparation and lithium storage properties of xLi3V2(PO4)3·LiVPO4F/C composite cathode material[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(1): 91-99.

[22] 唐致远, 冯季军. 锂电池阴极材料尖晶石型LiMn2-xLaxO4的研究[J]. 物理化学学报, 2003, 11: 1025-1029.

TANG Zhi-yuan, FENG Ji-jun. Studies on spinel LiMn2-xLaxO4 cathode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2003, 11: 1025-1029.

[23] LIANG L Q, XIANG M W, BAI W, et al. Electrochemical properties and kinetics of Li-Cu co-doping LiMn2O4 cathode materials[J]. Journal of Materials Science (Materials in Electronics), 2020, 31: 286-297.

[24] JIANG C H, TANG Z L, WANG S T, et al. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 144-148.

[25] GAO X F, SHA Y J, LIN Q, et al. Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 275: 38-44.

[26] WANG Y X, ZHOU L, DUAN X G, et al. Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals[J]. Catalysis Today, 2015: 576-584

[27] YU Y, XIANG M W, GUO J M, et al. Enhancing high-rate and elevated-temperature properties of Ni-Mg co-doped LiMn2O4 cathodes for Li-ion batteries[J]. Journal of Colloid and Interface Science, 2019, 555: 64-71.

[28] BIESINGER M C, PAYNE B, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257: 2717-2730.

[29] LUO X Y, XIANG M W, LI Y, et al. Surface-orientation for boosting the high-rate and cyclability of spinel LiNi 0.02Mn1.98O4 cathode material[J]. Vacuum, 2020, 179: 109509.

[30] ARUMUGAM D, KALAIGNAN G P. Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications[J]. Thin Solid Films, 2011, 520: 338-343.

[31] 陈 伟, 张 华, 张晓萍, 等. 锂离子电池正极材料LiMnBO3/C的合成及其电化学性能[J]. 中国有色金属学报, 2018, 28(3): 565-571.

CHEN Wei, ZHANG Xiao-ping, LIU Jie-qun, et al, Synthesis and electrochemical properties of LiMnBO3/C as cathode material for Li-ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3): 565-571.

[32] SHI T, DONG Y, WANG CM, et al. Enhanced cycle stability at high rate and excellent high rate capability of La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4[J]. Journal of Power Sources, 2015, 273: 959-965.

[33] 于 月, 向明武, 白红丽, 等.固相燃烧法快速合成LiNi0.03Mg0.10Mn1.87O4正极材料及电性能研究[J]. 稀有金属材料与工程, 2020, 49(4): 1437-1444.

YU Yue, XIANG Ming-wu, LIU Xiao-fang, et al. Rapid synthesis of LiNi0.03Mg0.10Mn1.87O4 cathode material by solid-state combustion method and its electrochemical properties[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1437-1444.

[34] TIAN J Y, ZHAO F, XUE P, et al. An approach to improve the electrochemical performance of LiMn2O4 at high temperature[J]. Ionics, 2016, 23(6): 1357-1364.

[35] HUANG Y, JIN F M, CHEN F J, et al. Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material under different voltages[J]. Journal of Power Sources, 2014, 256: 1-7.

Synthesis and electrochemical performance of LiLa0.02Mn1.98O4 cathode material for lithium ion battery

LI Yan1, 2, TAO Yang1, 2, BAI Hong-li1, 2, BAI Wei1, 2, XIANG Ming-wu1, 2, GUO Jun-ming1, 2

(1. National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China;

2. Key Laboratory of Green-chemistry Materials in University of Yunnan Province, Yunnan Minzu University, Kunming 650500, China)

Abstract: LiLa0.02Mn1.98O4 cathode material with a single crystal polyhedral morphology was prepared via a liquid flameless combustion method. The structure and morphology of the material were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The electrochemical performance was characterized by galvanostatic charge-discharge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the LiLa0.02Mn1.98O4 do not change the spinel structure of LiMn2O4, it delivers the initial discharge capacity of 112.7 and 94.5 mA·h/g with high capacity retention rate of 61.42% and 81.45% than that of the 53.69% and 56.9% in LiMn2O4after 500 cycles at 1C and 5C under 25 ℃, respectively. Especially, at a high current rate of 10C, the initial specific discharge capacity of LiLa0.02Mn1.98O4 is 73.5 mA·h/g, however, the LiMn2O4 is only 44.7 mA·h/g. Passing 500 cycles, the capacity retention rate of LiLa0.02Mn1.98O4 still mantian 81.09%. The CV and EIS test results also show that the La-doped material has good cycle reversibility and a larger lithium ion diffusion coefficient (1.04×10-16 cm2/s). In addition, the crystal structure and particle morphology of the LiLa0.02Mn1.98O4 are basically unchanged after 2000 cycles, indicating the appropriate La doping can stabilize the crystal structure and effectively inhibit Jahn-Teller effect. Therefore, the cycle performance of the material is improved.

Key words: spinel LiMn2O4; La-doping; truncated octahedron; lithium-ion battery; cathode materials

Foundation item: Projects(51972282, U1602273) supported by the National Natural Science Foundation of China; Project(2020Y0262) supported by the Scientific Research Fund of Yunnan Provincial Department of Education, China

Received date: 2020-08-07; Accepted date: 2021-01-14

Corresponding authors: BAI Hong-li; Tel: +86-13608713931; E-mail: bhl0873@163.com;

GUO Jun-ming; Tel: +86-13888046568; E-mail: guojunming@tsinghua.org.cn

(编辑  王  超)

基金项目:国家自然科学基金资助项目(51972282,U1602273);云南省教育厅科学研究基金资助项目(2020Y0262)

收稿日期:2020-08-12;修订日期:2021-01-14

通信作者:白红丽,研究馆员;电话:13608713931;E-mail:bhl0873@163.com;

郭俊明,教授;电话:13888046568;E-mail:guojunming@tsinghua.org.cn

摘  要:采用液相无焰燃烧法制备单晶多面体LiLa0.02Mn1.98O4材料,通过X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安(CV)、交流阻抗(EIS)等测试分析材料的电化学性能。结果表明:掺杂La3+没有改变LiMn2O4的尖晶石结构。在25 ℃、1C和5C倍率条件下,LiLa0.02Mn1.98O4初始放电比容量分别为112.7和94.5mA·h/g,循环500次后,LiLa0.02Mn1.98O4的容量保持率为64.42%和81.45%,而LiMn2O4样品的容量保持率分别为53.69%和56.9%;特别是在10C高倍率下,LiMn2O4样品的初始放电比容量仅有44.7 mA·h/g,同样条件下,LiLa0.02Mn1.98O4首次放电比容量达73.5 mA·h/g,循环500次后,容量保持率为81.09%。CV和EIS测试发现,掺杂后的材料有较好的循环可逆性,较大的锂离子扩散系数1.04×10-16 cm2/s,对循环2000次后的极片进行分析,材料的晶体结构和颗粒形貌基本没有变化,适量的La掺杂能够稳定材料的晶体结构,有效抑制Jahn-Teller,提高材料的循环性能。

[1] CHEN Qi-chao, YAN Guan-jie, LUO Li-ming, et al. Enhanced cycling stability of Mg-F co-modified LiNi0.6Co0.2Mn0.2-yMgyO2-zFz for lithium-ion batterie[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7): 1397-1403.

[2] 冯福山, 方海升, 杨 斌, 等. 升温速率对高电正极材料LiNi0.5Mn1.5O4晶粒形貌及电化学性能的影响[J].中国有色金属学报, 2016, 26(2): 347-353.

FENG Fu-shan, FANG Hai-sheng, YANG Bin, et al. Effect of heating rate on crystal morphology and electrochemical performance of high voltage cathode materialLiNi0.5Mn1.5O4[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 347-353.

[3] ZHAN C, WU T P, LU J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes a critical review[J]. Energy and Environmental Science, 2018, 11, 243-257.

[4] ZUO C J, HU Z X, QI R, et al. Double the capacity of manganese spinel for lithium on storage by suppression of cooperative Jahn-Teller distortion[J]. Advanced Energy Materials, 2020: 2000363

[5] PENG C C, HUANG J J, GUO Y J, et al. Electrochemical performance of spinel LiAlxMn2-xO4 prepared rapidly by glucose-assisted solid-state combustion synthesis[J]. Vacuum, 2015, 120: 121-126.

[6] ZHU J Y, LIU Q, XIANG M W, et al. Facile synthesis of truncated octahedron LiNi0.10Mn1.90O4 for high-performance Li ion batteries[J]. Ceramics International, 2020, 46: 14516-14522.

[7] SUN H B, CHEN Y G, XU C H, et al. Electrochemical performance of rare earth doped LiMn2O4 spinel cathode materials for Li-ion rechargeable battery[J]. Solid State Electrochem, 2012, 16: 1247-1254.

[8] WANG S M, LIU H L, XIANG M W, et al. Improved electrochemical properties and kinetics of LiMn2O4-based cathode co-modified via Cu-doping and truncated octahedron[J]. New Journal Chemistry, 2020, 44: 10569-10577.

[9] HUANG J J, YANG F L, GUO Y J, et al. LiMgxMn2-xO4 (x≤0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature[J]. Ceramics International, 2015, 41(8): 9662-9667.

[10] BI L N, LI X Y, LIU X Q, et al. Enhanced cycling stability and rate capability in La-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries[J]. ACS Sustainable Chemistry & Engineering. 2019, 7(8): 7693-7699.

[11] 汪 涛, 彭 文, 王启岁, 等. 基于La掺杂固相法合成LiNi0.5Mn1.5-xLaxO4及其性能研究[J]. 稀土, 2017, 38(5): 8-14.

WANG Tao, PENG Wen, WANG Qi-sui, et al. Effect of La doping on performance of LiNi0.5Mn1.5-xLaxO4 high volt materials[J]. Chinese Rare Earth, 2017, 38(5): 8-14.

[12] ZHU C Y, LIU J X, YU X H, et al. Boosting the stable Li storage performance in one-dimensional LiLaxMn2-xO4 nanorods at elevated temperature[J]. Ceramics International, 2019, 45: 19351-19359.

[13] ZHOU S Y, MEI T, WANG X B, et al. Crystal structural design of exposed planes: Express channels, high-rate capability cathodes for lithium-ion batteries[J]. Nanoscale, 2013, 10: 1039.

[14] KIM J S, KIM K S, CHO W, et al. A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries[J]. Nano Letters, 2012, 12(12): 6358-6365.

[15] BENEDEK R, THACKERAY M M. Simulation of the surface structure of lithium manganese oxide spinel[J]. Physical Review B, 2011, 83(19): 195439.

[16] HOSONO E, KUDO T, HONMA I, et al. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density[J]. Nano Letters, 2009, 9(3): 1045-1051.

[17] YANG C X, DENG Y F, GAO M, et al. High-rate and long-life performance of a truncated spinel cathode material with off-stoichiometric composition at elevated temperature[J]. Electrochimica Acta, 2017, 225: 198-206.

[18] HUANG S S, WU H, CHEN P H, et al. Facile pH-mediated synthesis of morphology-tunable MnCO3 and their transformation to truncated octahedral spinel LiMn2O4 cathode materials for superior lithium storage[J]. Journal of Materials Chemistry A, 2015, 3(7): 3633-3640.

[19] LI S Y, XIE J, ZHAO D N, et al. Morphological evolution of spinel disordered LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries by modified solid-state method[J]. Ionics, 2019, 25(5): 1999–2006.

[20] DUAN Y Z, GUO J M, XIANG M W, et al. Single crystalline polyhedral LiNixMn2-xO4 as high-performance cathodes for ultralong cycling lithium-ion batteries[J]. Solid State Ionics, 2018, 326: 100-109.

[21] 李 实, 梁树全, 曹鑫鑫, 等. xLi3V2(PO4)3·LiVPO4F/C复合正极材料的合成及储锂性能[J]. 中国有色金属学报, 2019, 29(1): 91-99.

LI Shi, LIANG Shu-quan, CAO Xin-xin, et al. Preparation and lithium storage properties of xLi3V2(PO4)3·LiVPO4F/C composite cathode material[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(1): 91-99.

[22] 唐致远, 冯季军. 锂电池阴极材料尖晶石型LiMn2-xLaxO4的研究[J]. 物理化学学报, 2003, 11: 1025-1029.

TANG Zhi-yuan, FENG Ji-jun. Studies on spinel LiMn2-xLaxO4 cathode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2003, 11: 1025-1029.

[23] LIANG L Q, XIANG M W, BAI W, et al. Electrochemical properties and kinetics of Li-Cu co-doping LiMn2O4 cathode materials[J]. Journal of Materials Science (Materials in Electronics), 2020, 31: 286-297.

[24] JIANG C H, TANG Z L, WANG S T, et al. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 144-148.

[25] GAO X F, SHA Y J, LIN Q, et al. Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 275: 38-44.

[26] WANG Y X, ZHOU L, DUAN X G, et al. Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals[J]. Catalysis Today, 2015: 576-584

[27] YU Y, XIANG M W, GUO J M, et al. Enhancing high-rate and elevated-temperature properties of Ni-Mg co-doped LiMn2O4 cathodes for Li-ion batteries[J]. Journal of Colloid and Interface Science, 2019, 555: 64-71.

[28] BIESINGER M C, PAYNE B, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257: 2717-2730.

[29] LUO X Y, XIANG M W, LI Y, et al. Surface-orientation for boosting the high-rate and cyclability of spinel LiNi 0.02Mn1.98O4 cathode material[J]. Vacuum, 2020, 179: 109509.

[30] ARUMUGAM D, KALAIGNAN G P. Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications[J]. Thin Solid Films, 2011, 520: 338-343.

[31] 陈 伟, 张 华, 张晓萍, 等. 锂离子电池正极材料LiMnBO3/C的合成及其电化学性能[J]. 中国有色金属学报, 2018, 28(3): 565-571.

CHEN Wei, ZHANG Xiao-ping, LIU Jie-qun, et al, Synthesis and electrochemical properties of LiMnBO3/C as cathode material for Li-ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3): 565-571.

[32] SHI T, DONG Y, WANG CM, et al. Enhanced cycle stability at high rate and excellent high rate capability of La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4[J]. Journal of Power Sources, 2015, 273: 959-965.

[33] 于 月, 向明武, 白红丽, 等.固相燃烧法快速合成LiNi0.03Mg0.10Mn1.87O4正极材料及电性能研究[J]. 稀有金属材料与工程, 2020, 49(4): 1437-1444.

YU Yue, XIANG Ming-wu, LIU Xiao-fang, et al. Rapid synthesis of LiNi0.03Mg0.10Mn1.87O4 cathode material by solid-state combustion method and its electrochemical properties[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1437-1444.

[34] TIAN J Y, ZHAO F, XUE P, et al. An approach to improve the electrochemical performance of LiMn2O4 at high temperature[J]. Ionics, 2016, 23(6): 1357-1364.

[35] HUANG Y, JIN F M, CHEN F J, et al. Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material under different voltages[J]. Journal of Power Sources, 2014, 256: 1-7.