Cu-In体系的热力学优化

黄松涛 储茂友 岳强 沈剑韵

北京有色金属研究总院矿物资源与冶金材料研究所,北京有色金属研究总院矿物资源与冶金材料研究所,北京有色金属研究总院矿物资源与冶金材料研究所,北京有色金属研究总院矿物资源与冶金材料研究所,北京有色金属研究总院矿物资源与冶金材料研究所 北京100088,北京100088,北京100088,北京100088,北京100088

摘 要:

评估了Cu-In体系的相平衡和热力学实验结果, 并对体系进行了热力学优化。采用替代模型描述体系的液相和富铜固溶体相, 双亚晶格模型描述线性化合物相, 三亚晶格模型描述非线性化合物相, 结合选取合理的实验数据, 优化得到Cu-In体系各相的热力学参数, 用优化结果计算的相图以及热力学性质与实验结果吻合。

关键词:

Cu-In;相图计算;热力学优化;

中图分类号: TG111.3

作者简介:储茂友 (E-mail:chumaoyou@163.com) ;

收稿日期:2006-12-25

基金:国家自然科学基金资助项目 (50672012);

Thermodynamic Optimization of Cu-In System

Abstract:

The data of phase diagram and thermodynamic properties of the Cu-In system in the literature were reviewed.The substitutional model was used for describing liquid and (Cu) terminal solid solution phases and two-sub lattice model for linear compounds and three-sub lattice model for non-stoichiometric compounds, respectively.Based on the available experimental data the thermodynamic parameters were optimized.The calculated phase diagram and thermodynamic properties were in reasonable agreement with experimental data.

Keyword:

Cu-In;phase diagram calculation;thermodynamic optimization;

Received: 2006-12-25

建立Cu-In体系的热力学模型, 对开发包含Cu, In元素的无铅焊料、 铜铟硒基太阳能电池材料有重要意义。 本文综合评估了Cu-In体系的相平衡和热力学实验结果, 选择适当的热力学模型, 进行热力学优化, 得到此二元系中各相的热力学参数。

1 实 验

Subramanian等 [1] 综合文献 [ 2, 3, 4, 5, 6, 7, 8, 9] 的实验结果, 首次给出了全温度范围内的实验相图。 Weibke等 [2] 的实验研究表明, In在Cu中有较大的固溶度, Cu-In体系中有7个中间化合物, 包括3个低温相δ-Cu7In3, η-Cu2In和φ (40.6%In) , 和4个高温相γ-Cu7In3, η′-Cu2In, β-Cu4In和ε (30%~32%In) 。 Rajasekharan等 [10] 对CuIn (44%In) 合金的研究表明, φ相为线性化合物Cu11In9。 Jain等 [8] 采用XRD (X射线衍射) 和DTA (差热分析) 方法对该体系的研究表明, 随温度下降此体系在35%~38%In组成范围内依次存在h, A, A′, B, C 五相; 而Bolcavage等 [11] 综合利用XRD, DTA, DSC (扫描量热) , EPMA (电子微探分析) 测试方法, 表明此组成范围内只有η′, η两相存在, 并发现η′相和Jain等 [8] 的h, A, A′构成的相区相吻合, η相和B, C相区相吻合, 此结果与Kim等 [9] 的实验结果相同, 也为本文优化所采用。

Kang等 [12] 用EMF (电动势) 实验测定了不同温度下Cu-In体系液相的混合焓。 Bahari等 [13] 采用DSC和量热法, 测量了Cu0.7In0.3合金的摩尔焓随温度的变化。 Kang等 [12] , Kameda等 [14] 均采用EMF方法对In在液相中的活度进行了测量, 两者的测量结果吻合较好。

Kao等 [15] , Hertz等 [16] , Liu等 [17] 分别对此体系进行了热力学优化。 但Kao等 [15] 忽略了γ和δ相在结构上的差别, 在优化时将这两个相视为同一个相处理。 Hertz等 [16] , Liu等 [17] 将η, δ相视为线性化合物, 而文献 [ 5, 8] 的相图实验结果表明, η, δ相均为有一定成分范围的非线性化合物。 最近Bahari等 [18] 综合采用了XRD, DSC和EPMA等几种方法对该体系进行了较全面的相平衡测量, 得到了一些新的相平衡实验结果。 综合考虑以上因素, 修正了各相的热力学模型, 对Cu-In二元体系重新进行热力学优化。

2 热力学模型

2.1 纯组元

对体系中的每一相φ, 其纯组元的摩尔自由焓°G φi φi (T) 与温度的关系采用下式描述:

°G φi φi (T) =G φi φi -H SERi SERi =a+bT+cTlnT+dT2+eT3+fT4+gT7+hT-9+iT-1 (J·mol-1) (1)

其中, HiSER是元素i在298.15 K标准参考态 (Standard Element Reference -SER) 下的摩尔焓, a, b, c……为温度系数。 Cu和In各相纯组元的参数见表1, 取自SGTE热力学数据库 [19]

表1 纯元素热力学参数*

Table 1 Unary data for pure components

Phase Temperature
range/K
a b c d e f g h i

Liquid Cu
298.15~1358 5194.277 120.973331 -24.112392 -2.65684×10-3 -1.29223×10-7 0 -5.849×10-21 0 52478

1358~3200 -46.545 173.881484 -31.38 0 0 0 0 0 0

Liquid In
298.15~494.4 -3696.798 84.701255 -21.8386 -5.72566×10-3 -2.12032×10-6 0 -5.59×10-20 0 -22906

494.4~3800 3749.81 116.835784 -27.4562 0.54607×10-3 -0.08367×10-6 0 0 0 -211708

Fcc Cu
298.15~1358 -7770.458 130.485235 -24.1124 -2.65684×10-3 1.29223×10-7 0 0 0 52478

1358~3200 -13542.026 183.803828 -31.38 0 0 0 0 3.642×1029 0

Tetr In
298.15~429.75 -6978.89 92.338115 -21.8386 -5.72566×10-3 -2.120321×10-6 0 0 0 -22906

429.75~3800 -7033.516 124.476588 -27.4562 -0.54607×10-3 -0.08367×10-6 0 0 3.53×1022 -211708

* ai: G φi φi (T) -H SERi SERi =a+bT+cTlnT+dT2+eT3+fT4+gT7+hT-9+iT-1

2.2 液相, 富铜固溶体相

液相 (Liquid) 、 富铜固溶体相 (α) 均采用替代模型描述, 摩尔自由焓表达式如下:

Gφ=2i=1xi°Gφi+RΤ2i=1xiln(xi)+x1x2nv=0vL(x1-x2)v(J?mol-1)???(2)

其中xi为组分i的摩尔分数, °G φi 为φ相纯组元i的摩尔自由焓, vL是两组元间的相互作用参数。

2.3 线性化合物: Cu11In9

Cu11In9相采用双亚晶格 (Cu) 0.55 (In) 0.45模型描述, 摩尔自由焓的数学表达式为:

GCu11In9=0.55 °G fccCu +0.45 °GtetrIn+a+bT (J·mol-1) (3)

其中a, b为待优化系数。

2.4 非线性化合物: β, δ, γ, η, η′

β, δ, γ, η, η′相都是有一定成分范围的非线性化合物, 其成分和温度范围列于表2。 根据γ, η′相结构的特点 [17] , 分别采用 (Cu) 0.654 (Cu, In, Va) 0.115 (In) 0.231, (Cu) 0.545 (Cu, In, Va) 0.122 (In) 0.333三亚晶格模型进行描述。 其余三相因缺乏结构方面的详细信息, 本文依据实验相图中各相成分的范围来构筑三亚晶格模型, β, δ, η三相的模型依次为 (Cu) 0.73 (Cu, In, Va) 0.14 (In) 0.13, (Cu) 0.68 (Cu, In, Va) 0.04 (In) 0.28, (Cu) 0.62 (Cu, In, Va) 0.03 (In) 0.35。 摩尔自由焓的表达式为:

G=yCu°GCu∶Cu∶In+yIn°GCu∶In∶In+yVa°GCu∶Va∶In+xRT{yCuln (yCu) +yInln (yIn) +yValn (yVa) }+yCuyInLCu∶Cu, In∶In+yCuyVaLCu∶Cu, Va∶In+yInyVaLCu∶In, Va∶In (J·mol-1) (4)

其中x″表示第二个亚晶格所占晶格阵点的摩尔分数, yi表示组分i在第二个亚晶格中的摩尔分数, LCu∶i, j∶In表示第二个亚晶格中i, j组元间的相互作用参数。

3 参数优化及结果

本文采用Thermo-Calc的Parrot优化模块 [20,21] , 利用上述实验数据, 对各相的参数进行优化。 首先利用液相混合焓 [12] 、 液相线 [2,18] 、 In在液相中的活度 [12,14] 数据, 优化液相的热力学参数。 然后固定液相的热力学参数, 利用该体系的相平衡实验数据 [1,2,5,6,8,15,18,22] 和热力学性质数据 [13,23,24] , 优化出各固相的热力学参数。 最后用所有数据对各相参数再进行一次优化, 使计算结果尽可能和实验数据相吻合。 优化后各相的热力学参数列于表3。

表2 非线性化合物的成分和温度范围

Table 2 Composition and temperature range of non-stoichiometric compounds

Phase Composition range/ (% In) Temperature range/K Refs.

β
18.05~24.5
18.2~23.8
847~983
847~988
[3]
[2]

δ
28.9~30.6 298~904 [1]

γ
27.7~31.3 887~957 [1]

η′
32.92~37.8 550~942 [1]

η
35.2~37.8 298~662 [8]

表3 Cu-In二元系中各相热力学参数的优化结果

Table 3 Optimized parameters for Cu-In system (J·mol-1)

Phase Model Parameters in this work

Liquid
(Cu, In) L(0)Cu,Ιn=-41545.0+238.89371T-29.90241TlnT

L(1)Cu,Ιn=-79490.5+376.06364T-44.9521TlnT

L(2)Cu,Ιn=-41279.9+186.07952T-22.65452TlnT

α
(Cu, In) L(0)Cu,Ιn=2191.2+14.44526T

L(1)Cu,Ιn=-42307.2+0.77762T

L(2)Cu,Ιn=-55686.5-39.73087T

β
(Cu) 0.73 (Cu, In, Va) 0.14 (In) 0.13 °GCu∶Cu∶In-0.87°GfccCu-0.13°GtetrΙn=-115.5501-3.19348T

°GCu∶I∶In-0.73°GfccCu-0.27°GtetrIn=-2331.64-3.89391T

°GCu∶Va∶In-0.73°GfccCu-0.13°GtetrIn=5326.035-4.63147T

γ
(Cu) 0.654 (Cu, In, Va) 0.115 (In) 0.231 °GCu∶Cu∶In-0.769°GfccCu-0.231°GtetrΙn=-4950.02-0.343T

°GCu∶In∶In-0.654°GfccCu-0.346°GtetrΙn=-6217.547-0.88817T

°GCu∶Va∶In-0.654°GfccCu-0.231°GtetrΙn=5000

δ
(Cu) 0.68 (Cu, In, Va) 0.04 (In) 0.28 °GCu∶Cu∶In-0.72°GfccCu-0.28°GtetrΙn=-7703.608+1.3553T

°GCu∶In∶In-0.68°GfccCu-0.32°GtetrIn=-7991.308+1.1853T

°GCu∶Va∶In-0.68°GfccCu-0.28°GtetrΙn=5000

L(0)CuCuΙnΙn=-467.2+0.5T

η′
(Cu) 0.545 (Cu, In, Va) 0.122 (In) 0.333 °GCu∶Cu∶In-0.667°GfccCu-0.333°GtetrΙn=-6372.397-0.8396T

°GCu∶Cr∶In-0.545°GfccCu-0.455°GtetrΙn=-168.969-7.0597T

°GCu∶Cu∶In-0.545°GfccCu-0.333°GtetrΙn=5000

L(0)CuCuΙnΙn=-14526.546+18.02T

η
(Cu) 0.62 (Cu, In, Va) 0.03 (In) 0.35 °GCu∶Cu∶In-0.65°GfccCu-0.35°GtetrΙn=-8125.223+1.355T

°GCu∶In∶In-0.62°GfccCu-0.38°GtetrIn=-7923.823+1.38T

°GCu∶In∶In-0.62°GfccCu-0.35°GtetrΙn=5000

Cu11In9
(Cu) 0.55 (In) 0.45 °GCu11In9-0.55°GfccCu-0.45°GtetrΙn=-7105.055+0.9533T

图1为由各相热力学参数优化结果计算的相图, 图2为计算相图与文献实验相平衡数据的比较, 图3为非线性化合物相区和实验结果的比较, 表4对比了无变反应计算值和文献实验值。 通过以上比较, 看出计算相图与已有的相平衡数据吻合很好, 非线性化合物的组分范围也与文献实验数据基本一致。

图1 Cu-In二元系的计算相图

Fig.1 Calculated phase diagram of Cu-In binary system

图4为利用优化结果计算的液相豁合焓与实验数据的比较, 图5为液相中In活度的计算值与实验值的符合情况, 图6为Cu0.7In0.3合金的摩尔焓计算值与实验值的比较。 从图4~6可以看出, 由优化结果计算的热力学性质与实验值均能很好地吻合。

图2 计算相图与实验相平衡数据的比较

Fig.2 Comparison of calculated phase diagram with experimental data

表4 计算相图中的无变反应与实验数据的比较

Table 4 Calculated invariant reactions compared with experimental data

Reaction Composition (% In) Temperature/K Refs.
Liquid+α?β
20.8
~20.9
20.0
19.6
9.5
10.05
7.5
7.18
18.3
18.05
19.0
18.6
988
983
984.5
984.0
[2]
[3]
[18]
This work

Liquid?β+γ
25.8
-
25.5
26.0
26.0
23.8
24.5
-
22.0
22.2
27.2
-
27.7
28.5
28.5
952
949
950
952.2
952.9
[2]
[3]
[5]
[18]
This work

Liquid?γ
29.1
29.56
29.4
30.3
29.1
29.56
29.4
30.3
-
-
-
-
958.2
955.5
957.3
960.2
[2]
[5]
[18]
This work

Liquid+γ?η′
35.2
-
35.4
35.6
36.6
31.2
31.3
-
32.0
31.6
32.7
32.9
33.0
33.3
33.6
944
940
940
943.4
942.4
[2]
[5]
[8]
[18]
This work

γ?β+δ
27.9
27.7
-
27.0
22.1
21.8
22.0
20.9
28.2
28.9
29.0
29.1
889
890
893.3
889.6
[2]
[5]
[18]
This work

γ?δ
29.5
30.15
29.8
29.8
29.5
30.15
29.8
29.8
-
-
-
-
904.2
903.2
905.4
907.2
[2]
[5]
[18]
This work

γ?δ+η′
30.8
31.3
-
32.0
31.9
30.5
30.6
-
30.6
30.6
32.7
33.1
33.4
33.3
33.8
888
886
887
891.0
887.8
[2]
[5]
[8]
[18]
This work

β?α+δ
20.0
20.15
-
-
19.0
19.5
11.63
10.90
10.90
10.85
-
8.29
28.7
-
-
-
29.0
28.8
847
847
848
848
849.7
848.7
[2]
[3]
[4]
[6]
[18]
This work

η′+δ?η
35.0
-
36.2
32.0
-
31.4
34.5
-
35.6
661.8
662
661.9
[18]
[25]
This work

η′+Liquid?Cu11In9
36.4
37.8
37.7
97.0
97.0
95.8
45.0
45.0
45.0
579.0
580
580.4
[18]
[25]
This work

η′?η+Cu11In9
-
37.6
-
36.8
-
45.0
549.8
549.7
[18]
This work

Liquid?Cu11In9+In
-
98.4
99.3
-
45.0
45.0
100
100
100
428.7
427
430.2
[18]
[25]
This work

图3 局部相图中相区内的实验数据的吻合情况 (实心点为落在两相区内的点, 空心点为落在单相区内的点)

Fig.3 Comparison of calculated phase diagram from 15% to 40% In with selected data (solid symbols in two-phase regions, open symbols in single-phase regions)

图4 Cu-In体系的液相混合焓的计算值与实验数据的比较

Fig.4 Comparison between calculated enthalpies of mixing of Cu-In liquid phase and experimental data

图5 Cu-In体系液相中In活度计算值与实验数据的比较 (参考态: 液相纯In)

Fig.5 Comparison between calculated activities of indium in Cu-In liquid phase and experimental data (reference state: liquid In)

图6 Cu0.7In0.3合金摩尔焓的计算结果与实验数据的比较

Fig.6 Comparison between calculated molar enthalpies of the Cu0.7In0.3 alloy and experimental data

4 结 论

对Cu-In二元系进行了热力学优化, 选用了适合的热力学模型描述体系中的各相, 利用相关实验数据, 优化出各相的热力学模型参数。 用优化结果计算的相图以及热力学性质与实验数据吻合较好。

参考文献

[1] Subramanian P R, Laughlin D E.The Cu-In (copper-indium) sys-tem[J].Bull.Alloy Phase Diagrams, 1989, 10:554.

[2] Weibke F, Eggers H.The phase diagram of the system copper-in-dium[J].Z.Anorg.Allg.Chem., 1934, 220:273.

[3] Hume-Rothery W, Raynor G V, Packer K K.The constitution andstructure of alloys of intermediate composition in the systems copper-indium, copper-aluminum, copper-germanium[J].J.Inst.Met., 66, 1940:209.

[4] Owen E A, Morris D P.The application of X-ray methods to thedetermination of phase boundaries in metallurgical equilibrium dia-grams[J].J.Inst.Met., 76, 1949-1950:145.

[5] Reynolds J, Wiseman W A, Hume-Rothery W.The equilibriumdiagram of the system copper-indium in the region 25%~35%indi-um[J].J.Inst.Met., 1951-1952, 80:637.

[6] Jones R O, Owen E A.X-ray determination of the alpha-phaseboundary of the copper-indium alloy system[J].J.Inst.Met., 1953-1954, 82:445.

[7] Straumanis M E, Yu L S.Lattice parameters, densities, expansioncoefficients and perfection of structure of Cu2Inαphase[J].ActaCrystallogr.A, 1969, 25:676.

[8] Jain K C, Ellner M, Schubert K.On the phases occurring near thecomposition Cu64In36[J].Z.Metallkd., 1972, 63 (8) :456.

[9] Kim H S.Crystal structure studies of alloys InMn3, γCu-In, δCu-In andγ3Au-Zn[D].Ph.D dissertation, Physics, University ofWaterloo, Waterloo, Ontario, Canada, 1980.

[10] Rajasekharan T P, Schubert K.Crystal structure of Cu11In9[J].Z.Metallkd., 1981, 72:275.

[11] Bolcavage A, Chen S W, Kao C R, Chang Y A, Romig Jr A D.Phase equilibria of the Cu-In system.I.experimental inverstigation[J].J.Phase Equilibria, 1993, 14:14.

[12] Kang T, Kehaiain H V, Castanet R.Thermodynamic study of thecopper-indium binary system.2.potentiometric study[J].J.Less-Com.Met., 1977, 53:153.

[13] Bahari Z, Dichi E, Legendre B.Heat content and heat capacity ofCu0.7In0.3from 298 K to 1273 K[J].Z.Metallkd., 1999, 90:55.

[14] Kameda K.Activity measurements of liquid Cu-In alloys by EMFusing zirconia electrolyte[J].J.Jpn.Inst.Metals, 1990, 54:54.

[15] Kao C R, Bolcavage A, Chen S L, Chen S W, Chang Y A, RomigJr A D.Phase equilibria of the Cu-In system.I.experimental in-vestigation[J].J.Phase Equilibria, 1993, 14:22.

[16] Jean Hertz, Khadija EI Aissaoui, Lahcen Bouirden.A thermody-namic optimization of the Cu-In system[J].Journal of Phase Equi-libria, 2002, 23 (6) :473.

[17] Liu H S, Liu X J, Cui Y.Thermodynamic assessment of the Cu-Inbinary system[J].Journal of Phase Equilibria, 2002, 23 (5) :409.

[18] Zahra Bahari, Emma Dichi, Bernard Legendre.The equilibriumphase diagram of the copper-indium system:a new investigation[J].Thermochimica Acta, 2003, 401:131.

[19] Dinsdale A T.SGTE data for pure elements[J].Calphad, 1991, 15:317.

[20] Sundman B, Jansson B, Anderson J O.Thermocalc databank sys-tem[J].Calphad, 1985, 9:153.

[21] 储茂友, 郭江贵, 商顺利, 孙军, 沈剑韵.W-Zr体系的热力学优化[J].稀有金属, 2003, 27 (6) :701.

[22] Muschik T, Hehenkamp T.Solid-liquid-equilibria on the Cu-sideof the Cu-In system[J].Z.Metallkd., 1987, 78 (5) :358.

[23] Kang T, Kehaiain H V, Castanet R.Thermodynamic study of thecopper-indium binary system.I.calorimetric study[J].J.Calorim.Anal.Therm., 1976, 7 (3-7) :1.

[24] Vinokurova G A, Geiderikh V A.Thermodynamic properties of in-dium-copper alloys[J].Zh.Fiz.Khim., 1976, 50:1661.

[25] Bolcavage A, Chen S W, Kao C R, Chang Y A, Romig Jr A D.Phase equilibria of the Cu-In system.I.experimental investigation[J].J.Phase Equilibria, 1993, 14 (1) :14.

[26] Okamoto H.Cu-In (copper-indium) [J].J.Phase Equilibria, 1991, 12 (6) :702.

[27] Wallbrecht P C, Blachnik R, Mills K C.The heat capacity andenthalpy of some hume-rothery phases formed by copper, silver andgold.PartⅢ.Cu+Ga, Ag+Ga, Au+Ga, Cu+In, Ag+In andAu+In systems[J].Thermochim.Acta., 1981, 48:69.

[1] Subramanian P R, Laughlin D E.The Cu-In (copper-indium) sys-tem[J].Bull.Alloy Phase Diagrams, 1989, 10:554.

[2] Weibke F, Eggers H.The phase diagram of the system copper-in-dium[J].Z.Anorg.Allg.Chem., 1934, 220:273.

[3] Hume-Rothery W, Raynor G V, Packer K K.The constitution andstructure of alloys of intermediate composition in the systems copper-indium, copper-aluminum, copper-germanium[J].J.Inst.Met., 66, 1940:209.

[4] Owen E A, Morris D P.The application of X-ray methods to thedetermination of phase boundaries in metallurgical equilibrium dia-grams[J].J.Inst.Met., 76, 1949-1950:145.

[5] Reynolds J, Wiseman W A, Hume-Rothery W.The equilibriumdiagram of the system copper-indium in the region 25%~35%indi-um[J].J.Inst.Met., 1951-1952, 80:637.

[6] Jones R O, Owen E A.X-ray determination of the alpha-phaseboundary of the copper-indium alloy system[J].J.Inst.Met., 1953-1954, 82:445.

[7] Straumanis M E, Yu L S.Lattice parameters, densities, expansioncoefficients and perfection of structure of Cu2Inαphase[J].ActaCrystallogr.A, 1969, 25:676.

[8] Jain K C, Ellner M, Schubert K.On the phases occurring near thecomposition Cu64In36[J].Z.Metallkd., 1972, 63 (8) :456.

[9] Kim H S.Crystal structure studies of alloys InMn3, γCu-In, δCu-In andγ3Au-Zn[D].Ph.D dissertation, Physics, University ofWaterloo, Waterloo, Ontario, Canada, 1980.

[10] Rajasekharan T P, Schubert K.Crystal structure of Cu11In9[J].Z.Metallkd., 1981, 72:275.

[11] Bolcavage A, Chen S W, Kao C R, Chang Y A, Romig Jr A D.Phase equilibria of the Cu-In system.I.experimental inverstigation[J].J.Phase Equilibria, 1993, 14:14.

[12] Kang T, Kehaiain H V, Castanet R.Thermodynamic study of thecopper-indium binary system.2.potentiometric study[J].J.Less-Com.Met., 1977, 53:153.

[13] Bahari Z, Dichi E, Legendre B.Heat content and heat capacity ofCu0.7In0.3from 298 K to 1273 K[J].Z.Metallkd., 1999, 90:55.

[14] Kameda K.Activity measurements of liquid Cu-In alloys by EMFusing zirconia electrolyte[J].J.Jpn.Inst.Metals, 1990, 54:54.

[15] Kao C R, Bolcavage A, Chen S L, Chen S W, Chang Y A, RomigJr A D.Phase equilibria of the Cu-In system.I.experimental in-vestigation[J].J.Phase Equilibria, 1993, 14:22.

[16] Jean Hertz, Khadija EI Aissaoui, Lahcen Bouirden.A thermody-namic optimization of the Cu-In system[J].Journal of Phase Equi-libria, 2002, 23 (6) :473.

[17] Liu H S, Liu X J, Cui Y.Thermodynamic assessment of the Cu-Inbinary system[J].Journal of Phase Equilibria, 2002, 23 (5) :409.

[18] Zahra Bahari, Emma Dichi, Bernard Legendre.The equilibriumphase diagram of the copper-indium system:a new investigation[J].Thermochimica Acta, 2003, 401:131.

[19] Dinsdale A T.SGTE data for pure elements[J].Calphad, 1991, 15:317.

[20] Sundman B, Jansson B, Anderson J O.Thermocalc databank sys-tem[J].Calphad, 1985, 9:153.

[21] 储茂友, 郭江贵, 商顺利, 孙军, 沈剑韵.W-Zr体系的热力学优化[J].稀有金属, 2003, 27 (6) :701.

[22] Muschik T, Hehenkamp T.Solid-liquid-equilibria on the Cu-sideof the Cu-In system[J].Z.Metallkd., 1987, 78 (5) :358.

[23] Kang T, Kehaiain H V, Castanet R.Thermodynamic study of thecopper-indium binary system.I.calorimetric study[J].J.Calorim.Anal.Therm., 1976, 7 (3-7) :1.

[24] Vinokurova G A, Geiderikh V A.Thermodynamic properties of in-dium-copper alloys[J].Zh.Fiz.Khim., 1976, 50:1661.

[25] Bolcavage A, Chen S W, Kao C R, Chang Y A, Romig Jr A D.Phase equilibria of the Cu-In system.I.experimental investigation[J].J.Phase Equilibria, 1993, 14 (1) :14.

[26] Okamoto H.Cu-In (copper-indium) [J].J.Phase Equilibria, 1991, 12 (6) :702.

[27] Wallbrecht P C, Blachnik R, Mills K C.The heat capacity andenthalpy of some hume-rothery phases formed by copper, silver andgold.PartⅢ.Cu+Ga, Ag+Ga, Au+Ga, Cu+In, Ag+In andAu+In systems[J].Thermochim.Acta., 1981, 48:69.