中国有色金属学报

DOI:10.19476/j.ysxb.1004.0609.2017.10.24

锌粉置换镓锗渣草酸浸出过程

刘付朋,刘志宏,李玉虎,刘智勇,李启厚

(中南大学 冶金与环境学院,长沙 410083)

摘 要:

考察锌粉置换镓锗渣草酸浸出过程中,草酸浓度、浸出时间、液固比、浸出温度、双氧水浓度对镓、锗、锌、铁、铜、硅浸出率及浸出料浆过滤性能的影响,揭示在草酸浸出体系下添加双氧水促进镓、锗浸出的作用机理。结果表明,采用草酸和双氧水为浸出剂,不仅可实现镓、锗的选择性浸出,还可显著改善浸出料浆的过滤性能。双氧水促进镓、锗浸出的机理为其作为氧化剂使镓、锗单质及其硫化物氧化为可溶的氧化物;草酸与镓、锗可生成稳定络合物,而与硅的作用较弱,从而促进镓、锗的浸出,同时使浸出渣的过滤性能得以改善。在草酸浓度为110 g/L、双氧水浓度为0.12 mol/L、液固比(L/S)为8、搅拌速度为 300 r/min、浸出温度为40 ℃、浸出时间为30 min 的条件下,镓和锗浸出率分别为99.32%、98.86%,而铜、锌、硅的浸出率分别在0.82%、0.84% 、0.43%,且浸出料浆的过滤速度由常压硫酸浸出体系下的0.48 mL/min提高到100 mL/min。

关键词:

草酸双氧水浸出

文章编号:1004-0609(2017)-10-2154-10       中图分类号:TF803.21       文献标志码:A

作为高新技术支撑材料的镓和锗,因其优良的光电和化学性能,被广泛应用于军事、光纤通讯、催化剂、电子和医学等领域[1-3]。自然界中极少存在单一的镓、锗的工业矿床,镓、锗主要从锌、铝、铜等有色金属冶炼的副产物中回收。

锌粉置换镓锗渣作为一种典型的含镓、锗的物料,其镓、锗含量分别为 0.2%~0.4% 和 0.2%~0.5%(质量分数),具有较高的综合回收价值,目前在全球引起了广泛关注[4-7]。但由于该含镓锗物料中还含有锌、硅、铜、铁、砷、铅等成分,且物相较为复杂,所以, 实现镓、锗的高效回收面临着较大挑战。

还原或硫化挥发等火法工艺存在投资大、能耗高、污染重等缺点[8],因而,湿法回收技术是当前处理含 镓、锗物料的主要工艺。TORMA 和 LEE 等[9-10]采用碱浸工艺处理含锌冶炼渣,虽然该工艺可实现部分金属的选择性浸出,但由于浸出液中硅、铅和铝的含量较高,使得后续镓、锗回收较难。所以,目前多采用“硫酸浸出-萃取分离”的工艺处理锌冶炼渣。但采用常规硫酸浸出工艺时,锗浸出效果较差,仅为60%左右[11]。为了提高镓、锗的浸出率,KUL等[12]采用了氧化浸出工艺处理锌冶炼渣,锗的浸出率达到 90%左右,但硅的浸出使得浸出料浆的过滤性能严重恶化。为了消除硅对镓、锗浸出的不利影响,HARBUCK[13-14]和王继民等[15]分别采用硫酸与氢氟酸混合酸浸出高硅锌浸出渣中的镓、锗,两者的浸出率均可达 98%以上,但氟离子对设备腐蚀严重,且含氟废液难以处理。LIU等[16]采用高压酸浸工艺处理锌粉置换镓锗渣,镓、锗的浸出率分别可达98%、94%以上,矿浆的过滤速度较常规酸浸提高了近20倍。但由于高压酸浸设备复杂、投资及运行成本较高,难以工业化。为此,刘付朋等[17]又开展了在常压硫酸浸出体系添加硝酸钠及十二烷基磺酸钠助浸的研究,尽管镓、锗的浸出率分别达97%、90%以上,且浸出料浆的过滤性能得到明显改善。但仍有约10%的锗损失在渣中。

综上所述,虽然针对锌冶炼渣的硫酸浸出工艺展开了广泛研究,并取得了一定进展,但对高硅含镓、锗物料的处理工艺仍有待改进。采用硫酸强化浸出体系,虽然可提高镓、锗的浸出率,并改善浸出料浆的过滤性能,但锌、铁、铜和硅等也会相应大量浸出,使得后续镓、锗回收更加困难。此外,虽然研究人员针对锌冶炼渣硫酸浸出液中镓、锗的回收开发了多种萃取剂,但大多存在成本高、选择性低、水溶性强、来源不广泛等缺点[18-20]。为此,本文作者在已有工作的基础上,研究了锌粉置换镓锗渣的草酸浸出工艺,实现了镓、锗选择性浸出;而且更为重要的是,由于镓、锗在草酸浸出体系中以配合离子存在,所以采用价格低廉、来源广泛、性质稳定的萃取剂N235即可实现镓、锗的高效回收[21-22]

1  实验

1.1  实验原料

实验所用锌粉置换镓锗渣产自国内某冶炼厂,经干燥、磨细、混合后用作试验原料。物料化学成分、化学物相分析结果分别列于表 1 和 2。湿筛粒度分析结果如表 3 所列。物料的XRD谱如图 1 所示。物料EPMA 定量分析结果如图 2 和表 4 所示。物料中镓、锗、铁、硅的元素面分布图如图3所示。

由表1可知,实验所用锌粉置换镓锗渣主要成分为锌、硅、铜、铁、砷、铅等,其中Fe(Ⅱ)含量为3.74%(质量分数),占原料总铁含量的47.66%(质量分数);其镓和锗的含量分别为0.266%和0.362%(质量分数)。同时渣中二氧化硅的含量高达9.14%(质量分数),这使得镓、锗的回收较难进行。由表2可知,锗主要以MeO·GeO2、GeO2 形态存在,少量为Ge、GeS、GeS2;而镓主要以Ga2O3、MeO·Ga2O3 形态存在,少量为Ga、Ga2S3。XRD分析结果表明,锌粉置换镓锗渣中主要物相为金属锌、硫酸锌,也有少量铁酸锌、硅酸锌存在,由于含量较低,未见含镓、锗物相的衍射峰(见图1)。由表3可知,实验所用锌粉置换镓锗渣粒度较细,75%(质量分数) 以上的粒度小于45 μm。

表1  锌粉置换镓锗渣主要化学成分

Table 1  Main chemical composition of the zinc powder replacement residues containing gallium and germanium (mass fraction, %)

由表4 的电子探针定量分析结果可知,图2中点1主要物相为硫酸锌,该物相中基本不含镓、锗;图2中点6、11、13和点3、8分别为铁酸锌和硅酸锌物相,这两种物相中镓、锗的含量明显高于硫酸锌物相,另外,硅酸锌中镓、锗的分布要高于铁酸锌中。图2中其余的点主要为含有锌、铅、铜、钙等金属的铁、硅的胶体化合物。

表2  锌粉置换镓锗渣中镓锗物相的化学分析结果

Table 2  Gallium and germanium phases in zinc powder replacement residue containing gallium and germanium by chemical analysis (mass fraction, %)

表3  锌粉置换镓锗渣湿筛粒度分析结果

Table 3  Particle size distribution of zinc powder replacement residue containing gallium and germanium by wet screen analysis

图1  锌粉置换镓锗渣XRD谱

Fig. 1  XRD pattern of zinc powder replacement residue containing gallium and germanium

图2  锌粉置换镓锗渣电子探针分析图

Fig. 2  EPMA image of zinc powder replacement residue containing gallium and germanium

从图 3 所示的锗、铁、镓、硅元素在锌粉置换镓锗渣中的分布图可知,镓、锗主要以弥散状态分布在整个物料中,在含铁、硅的区域中均有分布。

为了证实锌粉置换镓锗渣中锗、镓与硅、铁的关系,利用表4中的数据,对渣中锗、镓、硅、铁的含量进行了线性拟合,其拟合结果如式(1)~(4)所示。

w(Ge)=0.1132+0.0534w(Si), R=0.842            (1)

w(Ge)=0.3061+0.0245w(Fe), R=0.597          (2)

w(Ga)=0.2114+0.0321w(Si), R=0.298           (3)

w(Ga)=0.1156+0.0061w(Fe), R=0.078           (4)

从以上线性拟合结果可知,锌粉置换镓锗渣中锗的含量与硅(见图4)、铁的含量均具有较好的相关性。而渣中镓的含量与硅、铁的含量的相关性较差。由此可知,在锌粉置换富集镓、锗的过程中锗主要以共沉淀的形式(MeO·GeO2) 进入到渣中;而镓主要是经锌粉还原后经氧化以Ga2O3存在渣中。

1.2  实验方法

量取一定体积已知浓度的H2C2O4 溶液于500 mL三口瓶中,将三口瓶置于恒温水浴中,升温至实验温度,然后按照预定的液固质量比加入一定量的双氧水和锌粉置换镓锗渣,开启搅拌,搅拌速度为300 r/min,保温一定时间。浸出结束后,浸出料浆真空抽滤,记录过滤时间,收集滤液并计量其体积,取样分析。滤渣干燥后称取质量,取样分析。

表4  锌粉置换镓锗渣电子探针分析结果

Table 4  EPMA results of zinc powder replacement residue containing gallium and germanium shown in Fig. 2

图3  锗、铁、镓、硅元素在锌粉置换镓锗渣中的分布

Fig. 3  Distributions of elements Ge, Fe, Ga and Si in zinc powder replacement residue containing gallium and germanium

图4  锌粉置换镓锗渣中锗含量与硅含量的相关性

Fig. 4  Correlation between Ge content and Si content in zinc powder replacement residue containing gallium and germanium

1.3  分析方法

采用Rigaku-TTRIII 型X 射线衍射仪(Cu 靶,Kα1=1.5406 )分析锌粉置换镓锗渣及浸出渣中物质的物相组成;采用JSM-6360LV 型扫描电镜观察浸出渣形貌;采用JXA-8230 型电子探针分析仪及化学选择性溶解的方法分析锌粉置换镓锗渣和浸出渣中镓 和锗的物相组分及含量;采用EDTA 直接滴定法分析浸出液中锌的含量(GB/T 8151.1-2000);采用硅钼蓝分光光度法测定浸出液中SiO2 的浓度(GB/T 8151.4- 2000);采用萃取分离苯芴酮分光光度法测定溶液及渣中锗的含量(GB/T 8151.13-2000);采用电感耦合等离子发射光谱法测定溶液及渣中镓、铁、铜的含量;浸出料浆置于d 100 mm 布氏漏斗中,用SHZ-D(Ⅲ)水循环式真空泵在真空度为0.07 MPa 条件下抽滤,测定浸出液过滤速率以表征浸出渣的过滤性能。

2  结果与讨论

从表2可知,锌粉置换镓锗渣中部分镓、锗以金属单质或硫化物形态存在,它们较相应的氧化物化学性质更为稳定,因而难以浸出。因此,在本次研究中引入双氧水为氧化剂,使得难溶的镓、锗单质及硫化物转化为相应易溶的氧化物。另外,本研究之所以采用草酸作为浸出剂主要基于以下原因:1) 草酸可与镓、锗形成较为稳定的配合物,而与锌、铜、铁等形成草酸盐沉淀,从而实现镓、锗的选择性浸出;2) 锌粉置换镓锗渣含SiO2高达9.14%(质量分数),硅的溶解会导致浸出料浆过滤性能变差,以及镓、锗浸出率偏低,而相比于硫酸、氢氟酸等无机酸,草酸与物料中硅反应较弱,从而可避免硅对镓、锗浸出不利的影响。

2.1  草酸浓度的影响

在温度40 ℃、时间30 min、H2O2浓度0.08 mol/L、液固比 8 的条件下,考察草酸浓度对镓、锗、铁、锌、铜和硅浸出率的影响,结果如图5所示。

从图5可知,在试验所考察的范围内,草酸浓度对镓、锗的浸出有显著的影响。当草酸浓度从40 g/L 增加至110 g/L时,镓、锗的浸出率分别由75.04%、37.33% 提高到 98.89%、94.19%,进一步增加草酸浓度对镓、锗的浸出无显著的影响。在相同条件下,当草酸浓度从40 g/L 提高至130 g/L时,铁的浸出率缓慢上升,由14.38% 提高到 32.33%. 这一缓慢的增长趋势主要因为:草酸可以与物料中的Fe(Ⅲ)形成稳定的配合物,从而促进其浸出;但草酸与Fe(Ⅱ)形成沉淀而析出,而Fe(Ⅱ)除了来自原物料外,也有部分来自草酸与Fe(Ⅲ)的反应产物,因此,铁的浸出与沉淀同步进行[23]。而与镓、锗、铁比较,锌、铜的浸出率随草酸浓度的增加而下降。 当草酸浓度从40 g/L 提高至130 g/L时,铜、锌的浸出率分别由2.31%、13.29% 降低至 0.65%、0.26%。这主要是因为草酸铜、草酸锌的溶度积较小,Ksp分别为4.43×10-10、1.38×10-9,因此浸出的铜、锌又会发生沉淀反应进入到浸出渣中。从草酸浸出渣的XRD谱(见图6)可知,锌、铜在浸出渣中主要以ZnC2O4·2H2O、CuC2O4存在。另外,从图5可知,在所研究的草酸浓度范围内,硅的浸出率在0.40%左右,这主要是因为草酸对SiO2的腐蚀性较小,反应产物不稳定[24],因而,草酸浓度的变化对硅的浸出影响较小。

2.2  时间的影响

在温度40 ℃、H2C2O4浓度110 g/L、H2O2浓度0.08 mol/L、液固比8的条件下,考察了浸出时间对镓、锗、铁、锌、铜、硅浸出率的影响,结果如图7所示。

图5  草酸浓度对镓、锗、铁、锌、铜、硅浸出率的影响

Fig. 5  Effect of oxalic acid concentration on leaching rates of Ga, Ge, Fe, Zn, Cu and Si

图6  草酸浸出渣的XRD谱

Fig. 6  XRD pattern of leaching residue after oxalic acid leaching

图7  浸出时间对镓、锗、铁、锌、铜、硅浸出率的影响

Fig. 7  Effect of leaching time on leaching rates of Ga, Ge, Fe, Zn, Cu and Si

从图7可知,在草酸浸出体系下,镓、锗在较短的浸出时间内即可达到较高的浸出率。在时间为30 min时,镓、锗的浸出率分别可达 98.89 %、94.19 %。

而铁的浸出率在0~20 min时呈上升趋势;而当时间由20 min增加至40 min时铁的浸出率由32.15%下降至24.14%;进一步延长时间,铁的浸出率继续上升。铁的浸出率有如此的变化趋势,主要归因于在20~40 min时,溶液中的二价铁随时间的延长会以FeC2O4·2H2O沉淀析出,而在40 min后,溶液中的二价铁和已沉淀的铁会被空气氧化为易溶的[Fe(C2O4)3]3-,所以铁的浸出率又会呈上升趋势。在相同的条件下,铜、锌的浸出率在20 min后逐渐下降,在60 min时,其浸出率分别只有0.30%、0.24%。而硅的浸出率在整个浸出时间范围内均在0.40%左右,矿浆的过滤性能相比于硫酸浸出体系明显改善。从图8可知,在硫酸浸出体系下浸出渣为不规则的团聚体,而在草酸体系下浸出渣形貌较为规整,结晶性较好,这使得浸出料浆在相同条件下的过滤速度由常规硫酸体系下的0.48 mL/min 提高到100 mL/min。

图8  不同浸出体系下浸出渣的SEM像

Fig. 8  SEM images of leaching residues under different leaching systems

2.3  液固比的影响

在温度40 ℃、H2C2O4 浓度110 g/L、H2O2浓度0.08 mol/L、时间30 min 的条件下,考察了液固比对镓、锗、铁、锌、铜、硅浸出率的影响,结果如图9所示。

图9  液固比对镓、锗、铁、锌、铜、硅浸出率的影响

Fig. 9  Effect of liquid-to-solid (L/S) ratio on leaching rates of Ga, Ge, Fe, Zn, Cu and Si

从图9可知,当液固比由4增加到8时,镓、锗的浸出率分别由84.21%、80.95%增加到98.89%、94.19%。而继续提高液固比,镓、锗的浸出率呈下降趋势。镓、锗浸出率随液固比的增加而提高主要归于以下两方面:1) 液固比提高改善了浸出动力学如传质等条件;2) 镓、锗在浸出液中以配合阴离子形态存在,溶液中少量锌、铜、铁离子可与镓、锗配合阴离子反应生成相应镓酸盐和锗酸盐,因此,镓、锗的浸出受制于镓酸盐、锗酸盐在溶液中的溶解平衡,而增大液固比,导致溶液中相关离子浓度降低,使得镓酸盐、锗酸盐不能达到其沉淀析出的饱和度,因而可以促进镓、锗浸出。当液固比超过8时,镓、锗浸出率反而略有降低的原因,则可从液固比增大对硅浸出的影响加以解释。如图9所示,当液固比由4增大到12时,硅的浸出率由0.12%增大到1.2%;由于高液固比下硅的聚沉难以发生,溶解的硅主要以硅胶形态存在,不仅导致浸出料浆过滤性能变差(液固比为4和12时分别为:110 mL/min和89 mL/min),也会造成镓、锗的吸附损失[25],从而使得其浸出率降低。在相同的条件下,铁的浸出率缓慢上升,至液固比为12时,铁的浸出率只为33.95%。由于草酸锌、草酸铜沉淀的生成,锌、铜的浸出率随液固比的增加呈下降趋势。因此,考虑到矿浆的过滤性能及金属的浸出率,最优的液固比选择为8。

2.4  浸出温度的影响

在H2C2O4浓度110 g/L、H2O2浓度0.08 mol/L、时间30 min、液固比8的条件下,考察了浸出温度对镓、锗、铁、锌、铜和硅浸出率的影响,结果如图10所示。

从图10可知, 在试验所考察的温度范围内,镓、锗的浸出率均呈先增加后减少的趋势,在温度为40 ℃时,镓、锗的浸出率分别为98.89%、94.19%。这主要是因为适当提高温度有利于浸出剂和金属离子传质,从而改善浸出效果。但在该浸出体系下,随温度的升高,双氧水分解速率加快,不利于双氧水与锌粉置换渣中以金属态或硫化物形式存在的镓、锗的反应[26]。因此,当温度超过40 ℃时,镓、锗的浸出率呈下降趋势。而在相同条件下,当浸出温度由20 ℃升高到60 ℃时,铁的浸出率增长较为缓慢,由21.75%提高到29.15%;锌、铜和硅的浸出率均在1%以下。

图10  浸出温度对镓、锗、铁、锌、铜、硅浸出率的影响

Fig. 10  Effect of temperature on leaching rates of Ga, Ge, Fe, Zn, Cu and Si

图11  双氧水的浓度对镓、锗、铁、锌、铜、硅浸出率的影响

Fig. 11  Effect of H2O2 concentration on leaching rates of Ga, Ge, Fe, Zn, Cu and Si

因此,在温度40 ℃时,可实现镓、锗高效选择性浸出。

2.5  H2O2浓度的影响

在H2C2O4浓度110 g/L、温度40 ℃、时间30 min、液固比8的条件下,考察了双氧水浓度对镓、锗、铁、锌、铜、硅浸出率的影响,结果如图11所示。

由图11可知,在草酸浸出体系下,双氧水的引入会促进镓、锗的浸出。当双氧水的浓度从0 mol/L增加至0.12 mol/L时,镓、锗的浸出率分别由95.78%、84.25% 增加至 99.32%、98.86%。继续增加双氧水的用量对镓、锗的浸出无明显的作用。双氧水的引入之所以能促进镓、锗的浸出主要是因为:锌粉置换渣中存在难溶的镓、锗的金属单质及硫化物,双氧水的引入会促进其氧化为易溶的氧化物,其主要反应如式(5)~(9),相应反应的吉布斯自由能的变化如表5所列。

=   (5)

=                  (6)

=      (7)

= (8)

=                (9)

由表5可知,镓、锗对应的金属及硫化物与双氧水在40 ℃反应时的吉布斯自由能的变化均为负值,由此可知,在草酸浸出体系下引入双氧水可使难溶的金属及硫化物转化为易溶的氧化物,从而促进了镓、锗的浸出。另外,双氧水的加入可使得锌粉置换渣中的Fe(Ⅱ)氧化为易于草酸根配合的Fe(Ⅲ),从而使得铁的浸出率由18.15%增加至31.08%。而在相同的条件下,锌、铜和硅的浸出率随双氧水浓度的增加变化较小且浸出率均在1%以下。所以,添加双氧水的草酸浸出体系下可实现镓、锗的高效选择性浸出。

表5  镓、锗单质及硫化物与双氧水反应的吉布斯自由能的变化

Table 5  Gibbs free energy change of oxidation reaction involved with H2O2

2.6  浸出液的净化

浸出单因素条件实验确定的最佳的浸出条件为:草酸浓度110 g/L、 双氧水浓度为0.12 mol/L、液固比为8、温度40 ℃、浸出时间30 min。在此浸出条件下,镓、锗、铁、锌、铜和硅的浸出率分别为99.32%、98.86%、30.25%、0.84%、0.82%和0.43%,浸出液中主要金属成分为镓、锗和铁。由于在草酸浸出液中镓、锗和Fe(Ⅲ) 性质极为相似,采用萃取工艺或沉淀工艺回收镓、锗时,铁离子与镓、锗的配合离子会发生共萃取或共沉淀,所以在回收镓、锗前,采用了超声辅助铁粉还原方法除铁。

在超声时间10 min、超声功率150 W、铁粉用量与溶液中铁离子摩尔比为6、水浴反应时间1 h、温度50 ℃、搅拌速度300 r/min的最优条件下,铁离子的去除率达99.01%,且镓、锗的损失率仅分别为0.68%、0.62%。如图12所示置换沉淀产物为FeC2O4·2H2O 。

图12  草酸浸出液除铁渣的XRD谱

Fig. 12  XRD pattern of iron removal residue

3  结论

1) 以草酸水溶液为浸出剂,可实现对高硅锌粉置换镓锗渣中镓、锗的高效选择性浸出;且由于草酸对硅浸出能力弱,浸出中生成的草酸盐结晶较好,具有助滤作用。

2) 随草酸浓度的增加,镓、锗的浸出率逐步提高,而锌、铜的浸出率逐渐减小。草酸浓度的变化对硅的浸出影响较小。在草酸浓度110 g/L时,镓、锗的浸出率分别可达98.89%、94.19%,而锌、铜、硅的浸出率均在1%以下。

3) 在草酸浸出体系下,镓、锗的浸出速率较高,在30 min可达到最大值;随液固比的增加,镓、锗浸出率逐渐增加,但矿浆的过滤性能会随之变差;温度对镓、锗浸出率的影响较小,在温度40 ℃时,镓、锗的浸出率达到最大值,继续升高温度,镓、锗的浸出率反而下降。

4) 双氧水的引入可提高镓、锗的浸出率,但对锌、铜、硅等金属的影响较小。在最优条件下,镓、锗的浸出率最高分别可达99.32%、98.86%,而铜、锌和硅的浸出率0.815%、0.842% 和0.430%。

5) 采用超声辅助铁粉还原的方法,可有效除去浸出溶液中的铁,铁的去除率达99.01%,而镓、锗的损失率分别在0.68%、0.62%。

REFERENCES

[1] 周令冶, 陈少纯. 稀散金属冶金[M]. 北京: 冶金工业出版社, 2008: 46-68.

ZHOU Ling-ye, CHEN Shao-chun. Scattered Metal Metallurgy[M]. Beijing: Metallurgical Industry Press, 2008: 46-68.

[2] Schimmel R C, Faber A J, De W H, Beerkens R G C, Khoe G D. Development of germanium gallium sulphide glass fibres for the 1.31 μm praseodymium-doped fibre amplifier[J]. Journal of Non-crystalline Solids, 2001, 284(1): 188-192.

[3] Depuydt B, Theuwis A, Romandic I. Germanium: From the first application of Czochralskicrystal growth to large diameter dislocation-free wafers[J]. Materials Science in Semiconductor Processing, 2006, 9(4): 437-443.

[4] 刘付朋, 刘志宏, 李玉虎, 刘智勇, 李启厚. 锌粉置换镓锗渣高压酸浸的浸出机理[J]. 中国有色金属学报, 2014, 24(4): 1091-1098.

LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LI Qi-hou. Leaching mechanism of zinc powder replacement residue containing gallium and germanium by high pressure acid leaching[J]. The Chinese Journal of Nonferrous Metal, 2014, 24(4): 1091-1098.

[5] Nusen S, Zhu Z W, Chairuangsri T, Cheng C Y. Recovery of germanium from synthetic leach solution of zinc refinery residues by synergistic solvent extraction using LIX 63 and Lonquest 801[J]. Hydrometallurgy, 2015, 151: 122-132.

[6] MOSKALYK R R. Review of germanium processing worldwide[J]. Minerals Engineering, 2004, 17(3): 393-402.

[7] KINOSHITA T, AKITA S, NII S, KAWAIZUMI F, TAKAHASHI K. Solvent extraction of gallium with non-ionic surfactants from hydrochloric acid solution and its application to metal recovery from zinc refinery residues[J]. Separation and Purification Technology, 2004, 37(2): 127-133

[8] 吕伯康, 刘 洋. 锌渣浸出渣高温挥发富集铟锗的试验研究[J]. 南方金属, 2007(3): 7-9.

Lü Bo-kang, LIU Yang. An experimental study of the enrichment of indium and germanium via high temperature volatilization of zinc residue[J]. Southern Metals, 2007(3): 7-9.

[9] Torma A E. Method of extracting gallium and germanium[J]. Mineral Processing and Extractive Metallurgy Review, 1991, 7(3): 235-258.

[10] Lee H Y, Kim S G, Oh J K. Process for recovery of gallium and germanium from zinc residues[J]. Transactions of the Institution of Mining and Metallurgy, 1994, 103(4): 76-79.

[11] WARDELL M P. Acid leaching extraction of Ga and Ge[J]. Journal of Metallurgy, 1987, 39(6): 40-45.

[12] KUL M, TOPKANA Y. Recovery of germanium and other valuable metals from zinc plant residues[J]. Hydrometallurgy, 2008, 92: 87-94.

[13] HARBUCK D D. Increasing germanium extraction from hydrometallurgical zinc residues[J]. Mineral & Metallurgical Processing, 1993, 10(1): 1-4.

[14] HARBUCK D D. Gallium and germanium recovery from domestic sources[R]. US: United States Department of the interior & Bureau Mines, 1992.

[15] 王继民, 曹洪杨, 陈少纯, 徐 毅, 张登凯. 氧压酸浸炼锌流程中置换渣中提取镓锗铟[J]. 稀有金属, 2014, 38(3): 471-479.

WANG Ji-min, CAO Hong-yang, CHEN Shao-chun, XU Yi, ZHAN Deng-kai. Recovery of Ge/Ga/In from replacement slag in pressure oxidation leaching process of zinc sulfide concentrate[J]. Chinese Journal of Rare Metals, 2014, 38(3): 471-479.

[16] LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LI Qi-hou, ZENG Li. Extraction of gallium and germanium from zinc refinery residues by pressure acid leaching[J]. Hydrometallurgy, 2016, 164: 313-320.

[17] 刘付朋, 刘志宏, 李玉虎, 刘智勇, 李启厚. 锌粉置换镓锗渣硫酸浸出过程[J]. 中国有色金属学报, 2016, 26(4): 908-916.

LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LI Qi-hou. Sulfuric leaching process of zinc powder replacement residue containing gallium and germanium[J]. The Chinese Journal of Nonferrous Metal, 2016, 26(4): 908-916.

[18] 张魁芳, 曹佐英, 肖连生, 曾 理, 张贵清, 李青刚. 采用HBL121 从锌置换渣高浓度硫酸浸出液中萃取回收镓[J]. 中国有色金属学报, 2014, 24(9): 2400-2408.

ZHANG Kui-fang, CAO Zuo-ying, XIAO Lian-sheng, ZENG Li, ZHANG Gui-qing, LI Qing-gang. Extraction of gallium from high concentration sulfuric acid leaching solution of zinc replacing slag by HBL121[J]. The Chinese Journal of Nonferrous Metal, 2014, 24(9): 2400-2408.

[19] Barnard K R, Urbani M D. The effect of organic acids on LIX63 stability under harsh strip conditions and isolation of a diketone degradation product[J]. Hydrometallurgy, 2007, 89: 40-51.

[20] MA Xi-hong, QIN Wen-qing, WU Xue-lan. Extraction of germanium(Ⅳ) from acid leaching solution with mixtures of P204 and TBP[J]. Journal of Central South University, 2013, 20(7): 1978-1984.

[21] Yang Xiu-li, Zhang Jun-wei, Fang Xi-hui. Extraction kinetics of niobium by tertiary amine N235 using Lewis cell[J]. Hydrometallurgy, 2015, 151: 56-61.

[22] Chen Fang, Wang Xiao-mei, Liu Wei-zao, Liang Bin, Yue Hai-rong, Li Chun. Selective extraction of nitric and acetic acids from etching waste acid using N235 and MIBK mixtures[J]. Separation and Purification Technology, 2016, 169: 56-58.

[23] Veglio F, Passariello B, Abbruzzese C. Iron removal process for high-purity silica sands production by oxalic acid leaching[J]. Industrial and Engineering Chemistry Research, 1999, 38(11): 4443-4448.

[24] Pokrovski G S, Schott J. Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters[J]. Geochimica et Cosmochimica Acta,1998,62(21/22): 3413-3428.

[25] Liang Duo-qiang, Wang Ji-kun, Wang Yun-hua. Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sp/halerite[J]. Hydrometallurgy, 2009, 95(1): 5-7.

[26] Arvin E, Pedersen L F. Hydrogen peroxide decomposition kinetics in aquaculture water[J]. Aquacultural Engineering., 2015, 64: 1-7.

Oxalic acid leaching process of zinc powder replacement residue containing gallium and germanium

LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LI Qi-hou

(School of Metallurgy and Environment, Central South University, Changsha 410083, China)

Abstract: The oxalic acid leaching of the zinc powder replacement residue containing gallium and germanium was carried out. The effects of oxalic acid concentration, leaching time, liquid-to-solid (L/S) ratio, leaching temperature, and hydrogen peroxide concentration on the leaching of gallium and germanium, together with the filterability of the leaching residues were investigated. The effective mechanisms of improving the leaching through adding hydrogen peroxide in oxalic acid leaching system were found out. The results show that using oxalic acid and hydrogen peroxide as leachant can effectively promote the leaching of Ga and Ge. Moreover, the filterability of leaching residues also can be obviously improved in the oxalic acid leaching system. These could be attributed to the fact that hydrogen peroxide oxidize elemental gallium and germanium, as well as their sulfides, while the oxalic acid promotes the formation of gallium and germanium complex, and oxalic acid has negligible effects on silica, thus the leaching of gallium and germanium and the filterability of the leaching residues were improved. The optimal leaching conditions are as follows: oxalic acid concentration of 110 g/L, hydrogen peroxide concentration of 0.12 mol/L, L/S ratio of 8, temperature of 40 ℃, stirring rate of 300 r/min, and leaching time of 30 min. Under the optimal conditions, 99.32% of Ga and 98.86% of Ge were leached out, while the leaching of Zn, Cu and Si were 0.815%, 0.842% and 0.430%, respectively. Moreover, the filtration rate of the leaching slurry increases from 0.48 mL/min in atmospheric pressure acid leaching system to 100 mL/min.

Key words: gallium; germanium; oxalic acid; hydrogen peroxide; leaching

Foundation item: Project(2012M521544) supported by the China Postdoctoral Science Foundation

Received date: 2016-07-21; Accepted date: 2017-01-20

Corresponding author: LIU Zhi-hong; Tel: +86-731-88830478; E-mail: zhliu@csu.edu.cn

(编辑  何学锋)

基金项目:中国博士后科学基金面上项目(2012M521544)

收稿日期:2016-07-21;修订日期:2017-01-20

通信作者:刘志宏,教授,博士;电话:0731-88830478;E-mail: zhliu@csu.edu.cn

摘  要:考察锌粉置换镓锗渣草酸浸出过程中,草酸浓度、浸出时间、液固比、浸出温度、双氧水浓度对镓、锗、锌、铁、铜、硅浸出率及浸出料浆过滤性能的影响,揭示在草酸浸出体系下添加双氧水促进镓、锗浸出的作用机理。结果表明,采用草酸和双氧水为浸出剂,不仅可实现镓、锗的选择性浸出,还可显著改善浸出料浆的过滤性能。双氧水促进镓、锗浸出的机理为其作为氧化剂使镓、锗单质及其硫化物氧化为可溶的氧化物;草酸与镓、锗可生成稳定络合物,而与硅的作用较弱,从而促进镓、锗的浸出,同时使浸出渣的过滤性能得以改善。在草酸浓度为110 g/L、双氧水浓度为0.12 mol/L、液固比(L/S)为8、搅拌速度为 300 r/min、浸出温度为40 ℃、浸出时间为30 min 的条件下,镓和锗浸出率分别为99.32%、98.86%,而铜、锌、硅的浸出率分别在0.82%、0.84% 、0.43%,且浸出料浆的过滤速度由常压硫酸浸出体系下的0.48 mL/min提高到100 mL/min。

[1] 周令冶, 陈少纯. 稀散金属冶金[M]. 北京: 冶金工业出版社, 2008: 46-68.

ZHOU Ling-ye, CHEN Shao-chun. Scattered Metal Metallurgy[M]. Beijing: Metallurgical Industry Press, 2008: 46-68.

[2] Schimmel R C, Faber A J, De W H, Beerkens R G C, Khoe G D. Development of germanium gallium sulphide glass fibres for the 1.31 μm praseodymium-doped fibre amplifier[J]. Journal of Non-crystalline Solids, 2001, 284(1): 188-192.

[3] Depuydt B, Theuwis A, Romandic I. Germanium: From the first application of Czochralskicrystal growth to large diameter dislocation-free wafers[J]. Materials Science in Semiconductor Processing, 2006, 9(4): 437-443.

[4] 刘付朋, 刘志宏, 李玉虎, 刘智勇, 李启厚. 锌粉置换镓锗渣高压酸浸的浸出机理[J]. 中国有色金属学报, 2014, 24(4): 1091-1098.

LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LI Qi-hou. Leaching mechanism of zinc powder replacement residue containing gallium and germanium by high pressure acid leaching[J]. The Chinese Journal of Nonferrous Metal, 2014, 24(4): 1091-1098.

[5] Nusen S, Zhu Z W, Chairuangsri T, Cheng C Y. Recovery of germanium from synthetic leach solution of zinc refinery residues by synergistic solvent extraction using LIX 63 and Lonquest 801[J]. Hydrometallurgy, 2015, 151: 122-132.

[6] MOSKALYK R R. Review of germanium processing worldwide[J]. Minerals Engineering, 2004, 17(3): 393-402.

[7] KINOSHITA T, AKITA S, NII S, KAWAIZUMI F, TAKAHASHI K. Solvent extraction of gallium with non-ionic surfactants from hydrochloric acid solution and its application to metal recovery from zinc refinery residues[J]. Separation and Purification Technology, 2004, 37(2): 127-133

[8] 吕伯康, 刘 洋. 锌渣浸出渣高温挥发富集铟锗的试验研究[J]. 南方金属, 2007(3): 7-9.

Lü Bo-kang, LIU Yang. An experimental study of the enrichment of indium and germanium via high temperature volatilization of zinc residue[J]. Southern Metals, 2007(3): 7-9.

[9] Torma A E. Method of extracting gallium and germanium[J]. Mineral Processing and Extractive Metallurgy Review, 1991, 7(3): 235-258.

[10] Lee H Y, Kim S G, Oh J K. Process for recovery of gallium and germanium from zinc residues[J]. Transactions of the Institution of Mining and Metallurgy, 1994, 103(4): 76-79.

[11] WARDELL M P. Acid leaching extraction of Ga and Ge[J]. Journal of Metallurgy, 1987, 39(6): 40-45.

[12] KUL M, TOPKANA Y. Recovery of germanium and other valuable metals from zinc plant residues[J]. Hydrometallurgy, 2008, 92: 87-94.

[13] HARBUCK D D. Increasing germanium extraction from hydrometallurgical zinc residues[J]. Mineral & Metallurgical Processing, 1993, 10(1): 1-4.

[14] HARBUCK D D. Gallium and germanium recovery from domestic sources[R]. US: United States Department of the interior & Bureau Mines, 1992.

[15] 王继民, 曹洪杨, 陈少纯, 徐 毅, 张登凯. 氧压酸浸炼锌流程中置换渣中提取镓锗铟[J]. 稀有金属, 2014, 38(3): 471-479.

WANG Ji-min, CAO Hong-yang, CHEN Shao-chun, XU Yi, ZHAN Deng-kai. Recovery of Ge/Ga/In from replacement slag in pressure oxidation leaching process of zinc sulfide concentrate[J]. Chinese Journal of Rare Metals, 2014, 38(3): 471-479.

[16] LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LI Qi-hou, ZENG Li. Extraction of gallium and germanium from zinc refinery residues by pressure acid leaching[J]. Hydrometallurgy, 2016, 164: 313-320.

[17] 刘付朋, 刘志宏, 李玉虎, 刘智勇, 李启厚. 锌粉置换镓锗渣硫酸浸出过程[J]. 中国有色金属学报, 2016, 26(4): 908-916.

LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LI Qi-hou. Sulfuric leaching process of zinc powder replacement residue containing gallium and germanium[J]. The Chinese Journal of Nonferrous Metal, 2016, 26(4): 908-916.

[18] 张魁芳, 曹佐英, 肖连生, 曾 理, 张贵清, 李青刚. 采用HBL121 从锌置换渣高浓度硫酸浸出液中萃取回收镓[J]. 中国有色金属学报, 2014, 24(9): 2400-2408.

ZHANG Kui-fang, CAO Zuo-ying, XIAO Lian-sheng, ZENG Li, ZHANG Gui-qing, LI Qing-gang. Extraction of gallium from high concentration sulfuric acid leaching solution of zinc replacing slag by HBL121[J]. The Chinese Journal of Nonferrous Metal, 2014, 24(9): 2400-2408.

[19] Barnard K R, Urbani M D. The effect of organic acids on LIX63 stability under harsh strip conditions and isolation of a diketone degradation product[J]. Hydrometallurgy, 2007, 89: 40-51.

[20] MA Xi-hong, QIN Wen-qing, WU Xue-lan. Extraction of germanium(Ⅳ) from acid leaching solution with mixtures of P204 and TBP[J]. Journal of Central South University, 2013, 20(7): 1978-1984.

[21] Yang Xiu-li, Zhang Jun-wei, Fang Xi-hui. Extraction kinetics of niobium by tertiary amine N235 using Lewis cell[J]. Hydrometallurgy, 2015, 151: 56-61.

[22] Chen Fang, Wang Xiao-mei, Liu Wei-zao, Liang Bin, Yue Hai-rong, Li Chun. Selective extraction of nitric and acetic acids from etching waste acid using N235 and MIBK mixtures[J]. Separation and Purification Technology, 2016, 169: 56-58.

[23] Veglio F, Passariello B, Abbruzzese C. Iron removal process for high-purity silica sands production by oxalic acid leaching[J]. Industrial and Engineering Chemistry Research, 1999, 38(11): 4443-4448.

[24] Pokrovski G S, Schott J. Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters[J]. Geochimica et Cosmochimica Acta,1998,62(21/22): 3413-3428.

[25] Liang Duo-qiang, Wang Ji-kun, Wang Yun-hua. Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sp/halerite[J]. Hydrometallurgy, 2009, 95(1): 5-7.

[26] Arvin E, Pedersen L F. Hydrogen peroxide decomposition kinetics in aquaculture water[J]. Aquacultural Engineering., 2015, 64: 1-7.