中南大学学报(自然科学版)

B位复合离子取代对Na1/2Bi1/2TiO3无铅压电陶瓷

介电特性的影响

周昌荣1, 2,刘心宇1, 2

 ( 桂林电子科技大学 信息材料科学与工程系,广西 桂林,541004;

2. 中南大学 材料科学与工程学院,湖南 长沙,410083)

摘 要:

摘  要:采用传统陶瓷制备方法,制备无铅新压电陶瓷材料(1-x)Na1/2Bi1/2TiO3-xNa1/2Bi1/2(Sb1/2Nb1/2)O3。利用X射线衍射,精密阻抗分析仪研究Na1/2Bi1/2TiO3陶瓷B位复合离子(Sb1/2Nb1/2)4+取代对晶体结构、弥散相变与介电弛豫行为的影响,并根据宏畴-微畴转变理论探讨该体系陶瓷产生介电弛豫的机理。研究结果表明,在所研究的组成范围内,陶瓷材料均能够形成纯钙钛矿固溶体。该体系陶瓷具有2个介电反常峰tf和tm,表现出与典型弛豫铁电体明显不同的弛豫行为,掺杂量低的陶瓷仅在低温介电反常峰tf附近表现出明显的频率依赖性,而掺杂量高的陶瓷材料在室温和tf之间都表现出明显的频率依赖性。

关键词:

钛酸铋钠无铅压电陶瓷介电性能弛豫特性

中图分类号:TM282         文献标识码:A         文章编号:1672-7207(2009)01-0200-05

Effect of B-site complex ions substitution on dielectric properties of Na1/2Bi1/2TiO3 lead-free piezoelectric ceramics

ZHOU Chang-rong1, 2, LIU Xin-yu1, 2

 (Department of Information Material Science and Engineering, Guilin University of Electronic Technology,

 Guilin 541004, China;

2. School of Materials Science and Engineering, Central South University, Changsha 410083, China)

Abstract: A new lead-free piezoelectric ceramics of (1-x)Na1/2Bi1/2TiO3-xNa1/2Bi1/2(Sb1/2Nb1/2)O3 was prepared by conventional solid state reaction and the effects of B-site complex ions substitution on dielectric properties and relaxation of Na1/2Bi1/2TiO3 lead-free piezoelectric ceramics were investigated. The mechanism of relaxor behavior was also discussed according to the macro-domain to micro-domain transition theory. X-ray diffraction patterns show that (Sb1/2Nb1/2)4+ diffuses into the lattice of Na1/2Bi1/2TiO3 to form a solid solution with perovskite-type structure. The temperature dependence of dielectric constant reveals that the solid solution has two dielectric abnormal peaks. All samples exhibit relaxor characteristics different from classic relaxor ferroelectrics. The samples with low doping level of Na1/2Bi1/2(Sb1/2Nb1/2)O3 exhibit obvious frequency dependence only near the low temperature dielectric abnormal peak tf, and the samples with a high doping level of Na1/2Bi1/2(Sb1/2Nb1/2)O3 exhibit obvious frequency dependence between room temperature and tf.

Key words: sodium bismuth titanate; lead-free piezoelectric ceramics; dielectrics properties; relaxor characteristics

                    

钛酸铋钠(Na1/2Bi1/2)TiO3(简称NBT)是一种A位复合取代的ABO3型钙钛矿铁电体,其晶格常数a=0.389 nm,α=89.6?,Na+和Bi3+无序分布于12面体中。NBT有2个温度诱导的相变:在230 ℃由三方铁电相转变为四方结构;在520 ℃由四方结构转变为立方结构,这2个相变均为一级相变。介电常数在320 ℃附近存在1个介电峰,即居里峰。另外,在200 ℃,NBT还存在1个拐点式的介电和损耗异常峰,对应三方铁电相转变为四方非铁电相[1-3]

NBT在室温下的剩余极化Pr=38 ?C/cm2,矫顽场Ec=73 kV/cm,具有很强的铁电性,被认为是最有希望的无铅压电材料之一[4-7]。尽管NBT是作为优良的无铅压电陶瓷而广受关注,但它也是一种高温弛豫铁电体。目前,人们对NBT基陶瓷的介电弛豫行为研究较少,对铅基B位复合ABO3钙钛矿结构弛豫铁电铁如Pb(Mg1/3Nb2/3)O3,Pb(Sb1/2Nb1/2)O3等的研究较多。为此,本文作者采用传统陶瓷制备方法,制备无铅新压电陶瓷材料(1-x)Na1/2Bi1/2TiO3-xNa1/2Bi1/2(Sb1/2Nb1/2)- O3,研究B位复合离子(Sb1/2Nb1/2)4+取代 (Na1/2Bi1/2)- TiO3无铅压电陶瓷的介电性能和弛豫特征。

1  实  验

采用分析纯的原料Bi2O3, Na2CO3, TiO2, Sb2O3和Nb2O5,根据化学式(1-x)Na1/2Bi1/2TiO3-xNa1/2Bi1/2- (Sb1/2Nb1/2)O3 (简称NBT-NBSN100x)进行配比,x取0.2%,0.6%,0.8%,1.0%和1.4 %(摩尔分数)。准确称量后,以无水乙醇为球磨介质球磨12 h,干燥后,在850~950 ℃保温2 h合成,合成后的粉料烘干破碎过筛造粒后加入3%的PVA溶液作为粘结剂,在110 MPa的压力下压制成直径为18 mm,厚度为1.0~1.5 mm的圆坯,慢速升温(3 ℃/min)至600 ℃保温2 h排胶,然后以200 ℃/h的升温速度,在1 150 ℃烧结保温2 h,样品磨光后被银电极,由TH2818型数字电桥和智能温控组成的测试系统测量陶瓷样品的介电常数随温度的变化,升温速率约为2 ℃/ min。

2  结果及讨论

图1所示为NBT-NBSN100 x陶瓷试样的XRD图谱。从图1可以看到,所研究的陶瓷样品均形成了单一的钙钛矿(ABO3)型固溶体结构。

图1  室温下NBT-NBSN100 x陶瓷样品的XRD图谱

Fig.1  XRD pattern of NBT-NBSN100 x ceramics at room temperature

图2所示为NBT-NBSN100 x系陶瓷在频率为10 kHz时的介电常数-温度曲线。从图2可以看出,陶瓷样品的介电常数温度曲线在200~270 ℃和350~400 ℃存在2个介电反常峰,分别称为低温介电反常峰tf和高温介电反常峰tm,与NBT-BT,NBT-KBT和NBT- KBT-BT等体系的结果一致[8-12]。低温介电峰tf与该体系材料在升温过程中产生的铁电-反铁电相变相对应,高温介电峰tm与该体系材料产生的反铁电-顺电相变相对应。

图2  NBT-NBSN100 x陶瓷在10 kHz时的介电常数εr随温度的变化

Fig.2  Relationship between temperature and dielectric constant εr of NBT-NBSN100 x ceramics at 10 kHz

从图2所示的介电温谱中同时还可以看出,所研究陶瓷样品的介电峰均表现出宽化峰,表明该材料具有弥散铁电相变特征。可用修正的居里外斯公式来描述复合铁电体的介电弥散行为[12]

式中:εm 为介电常数的峰值;tm为介电峰值所对应的温度;C为常数;γ为衡量相变弥散程度的弥散性指数。在t>tm时可通过线性拟合的方法拟合出弥散相变的弥散系数γ,从而确定弥散相变的弥散程度。图3所示为NBT-NBSN100 x陶瓷的弥散系数γ随x的关系曲线。从图3可以看出,弥散指数γ随掺杂量的增加而减少。

(a) x=0.2%, γ=1.87; (b) x=0.6%, γ=1.77; (c) x=1.0%, γ=1.68; (d) x=1.4%, γ=1.37

图3  NBT-NBSN100 x陶瓷在10 kHz时的ln(1/ε-1/εm)与ln(t-tm)的关系

Fig.3  Relationship between ln(1/ε-1/εm) and ln(t-tm) of NBT-NBSN100 x ceramics at 10 kHz

图4所示为NBT-NBSN100 x陶瓷在频率为1,10和100 kHz时的介电常数、介电损耗与温度的关系曲线。从图4可以看出,该体系陶瓷样品表现出与典型弛豫铁电体明显不同的弛豫特性。当Na1/2Bi1/2- (Sb1/2Nb1/2)O3含量较低时,样品NBT-NBSN0.2仅在低温介电反常峰tf附近介电常数表现出较强的频率依赖特性,温度低于或高于tf时,频率依赖特性慢慢消失。关于弛豫铁电体的来源有很多理论解释,如:成分起伏理论[13],超顺态理论[14],玻璃态极化理论[15],无规场理论[16],宏畴-微畴转化模型[16-18]等。根据宏畴-微畴转化理论,样品NBT-NBSN0.2在低温时宏畴稳定存在,介电常数不存在频率依赖性,随温度的升高,在温度tf附近宏畴慢慢转化为微畴,出现明显的弛豫特征。温度进一步提高,微畴转化为极性微区,并进一步转化为反铁电宏畴,频率依赖性又消失。这可以从介电损耗-温度曲线得到说明。NBT基铁电陶瓷的介电损耗主要来源于畴壁振动。样品NBT-NBSN0.2的畴壁在温度tf附近因宏畴转化为微畴而快速增加,导致介电损耗急剧增加。随温度上升,微畴转化为极性微区,微畴消失,介电损耗下降,并在介电损耗-温度曲线上,在温度tf附近出现损耗峰。

(a) x=0.2%; (b) x=0.8%; (c) x=1.0%; (d) x=1.4%

图4  NBT-NBSN100 x陶瓷在1,10,100 kHz下的介电常数εr与介电损耗随温度的变化

Fig.4  Temperature dependence of dielectric constant εr and dielectric loss tanδ of NBT-NBSN100 x ceramics at frequency of 1, 10, 100 kHz

从图4中还可以看出,随Na1/2Bi1/2(Sb1/2Nb1/2)O3含量增加,样品在室温与tf间都存在明显的介电弛豫特征;温度高于tf后,其频率依赖性又慢慢消失。这是因为Na1/2Bi1/2(Sb1/2Nb1/2)O3掺杂时,(Sb1/2Nb1/2)4+的半径与Ti4+的半径相近,一般进入NBT晶格的B位取代Ti4+。但由于Sb是变价元素,在高温烧结时部分Sb以Sb5+形式存在,导致电价不平衡,产生A位空位。由于ABO3型钙钛矿结构铁电体可看作BO6氧八面体在空间三个方向上连结而成,其中A位处于连结体的空隙内。A位空位的产生降低氧八面体的耦合,使铁电宏畴的稳定性降低。掺杂量较高的样品产生高浓度的A位空位使部分铁电宏畴转化为微畴,因而在室温表现出强烈的频率依赖性。这也可以从介电损耗-温度曲线得到说明。在低温时已有部分铁电宏畴转化为微畴,因此,随温度增加,畴壁的增加趋势减弱,掺杂量较低的样品中尖锐的损耗峰转变为掺杂量较高样品中平缓的损耗峰。

3  结  论

a. NBT-NBSN100 x陶瓷体系都形成了纯的钙钛矿结构固溶体。

b. NBT-NBSN100 x陶瓷具有2个介电反常峰tf和tm

c. 在介电常数最大的温度Tm附近,NBT- NBSN100 x陶瓷都表现为宽化的介电峰,为弥散相变的特征,修正的居里-外斯公式较好地描述了陶瓷弥散相变特征,弥散指数随Na1/2Bi1/2(Sb1/2Nb1/2)O3掺杂量的增加而下降。

d. 不同频率下的介电温谱曲线显示该体系陶瓷表现出与典型弛豫铁电体明显不同的弛豫行为。低掺杂量的陶瓷仅在低温介电反常峰tf附近表现出明显的频率依赖性,高于或低于tf介电频率依赖性消失。而掺杂高的陶瓷材料在室温和低温介电反常峰tf之间都表现出明显的频率依赖性。

参考文献:

[1] Takenaka T, Sakata K. Dielectric piezoelectric and pyroeletric properties of Bi1/2Na1/2TiO3-based ceramics[J]. Ferroelectrics, l989, 95(1): 153-156.

[2] Takenaka T, Maruyama K, Sakata K. Bi1/2Na1/2TiO3-BaTiO3 system for lead-free piezoelectric ceramics[J]. Japanese Journal of Applied Physics, 1991, 30 (9B): 2236-2239.

[3] Li Y M, Chen W, Xu Q, et al. Relaxor behavior and ferroelectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-KNbO3 lead-free ceramics[J]. Materials Science, 2005, 40(14): 3625-3628.

[4] 谭小平, 梁叔全. 氧化锆-莫来石纳米复相陶瓷的制备[J]. 中南大学学报: 自然科学版, 2005, 36(5): 790-794.
TAN Xiao-ping, LIANG Shu-quan. Preparation of ZrO2-mullite nao-composite ceramics[J]. Journal of Central South University: Science and Technology, 2005, 36(5): 790-794.

[5] Wang X X, Lwok K W, Tang X G, et al. Electromechanical properties and dielectric behavior of (Bi1/2Na1/2)(1-1.5x)BixTiO3 lead-free piezoelectric ceramics[J]. Solid State Communications, 2004, 129(5): 319-323.

[6] Tu C S, Sniy I G, Schmid V H. Sequence of dielectric anomalies and high temperature relaxation behavior of Na1/2Bi1/2TiO3[J]. Physics Review B,1994, 49(17): 11550-11554.

[7] Smolenskii G A, Isupov V A, Agranovskaya, et al. Ferroelectrics with diffuse phase transition[J]. Soviet Physics Solid State, 1996, 2(11): 2584-2589.

[8] Qing X, Xingzhong Z. Processing and properties of CeO2-doped ferroelectric (Bi0.5Na0.5)0.94Ba0.06TiO3[J]. Materials Letter, 2006, 60 (7): 1453-1458.

[9] Nagata H, Koizumi N, Takenaka T. Lead-free piezoelectric ceramics of Bi1/2Na1/2TiO3-BiFeO3 system[J]. Key Engineering Materials, 1999, 169(5/6): 37-40.

[10] Nagata H, Takenaka T. Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics[J]. Journal of Europe Ceramics Society, 2001, 21(10/11): 1299-1302.

[11] Saski A, Chiba T. Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 system[J]. Japanese Journal of Applied Physics, 1999, 38(9B): 5564-5567.

[12] Uchino K, Nomura S. Critical exponents of the dielectric constant in diffused phase Transition crystals[J]. Ferroelectric Letter Section,1982, 44(3): 55-56.

[13] Smolensky G A, Agranovus A I. Dielectric properties of complex compound[J]. Soviet Physics Solid State, 1995, 6(1): 1429-1437.

[14] Cross L E. Relaxor ferroelectrics[J]. Ferroelectric,1988, 67(6): 241-246.

[15] Schmidt G. Cubicallys tabilized perovskites[J]. Ferroelectric, 1990, 104(4): 205-216.

[16] Westphal V, Kleemann W. Diffuse phase transitions and random-field-induced domain states of the relaxor ferroelectric P b(Mg2/3Nb1/3O3[J]. Physics Review Letter, 1992, 68(8): 847-850.

[17] 姚 熹, 陈至立. 弛豫型铁电体[J]. 压电与声光, 1984, 6(2): 1-11.
YAO Xi, CHEN Zhi-li. Relaxor ferroelectrics[J]. Piezoelectrics & Acoustooptics, 1984, 6(2): 1-11.

[18] 张栋杰. 弛豫铁电体的弛豫性结构研究[J]. 功能材料, 2005, 36(7): 1017-1019.

ZHANG Dong-jie. Structure and relaxation of relaxor ferroelectrics[J]. Journal of Functional Materials, 2005, 36(7): 1017-1019.

                                 

收稿日期:2008-03-10;修回日期:2008-05-08

基金项目:广西壮族自治区自然科学基金资助项目(0447092)

通信作者:周昌荣(1975-),男,广西桂林人,博士研究生,从事功能陶瓷材料研究;电话:0773-5601434;E-mail: zcr750320@yahoo.com.cn


[1] Takenaka T, Sakata K. Dielectric piezoelectric and pyroeletric properties of Bi1/2Na1/2TiO3-based ceramics[J]. Ferroelectrics, l989, 95(1): 153-156.

[2] Takenaka T, Maruyama K, Sakata K. Bi1/2Na1/2TiO3-BaTiO3 system for lead-free piezoelectric ceramics[J]. Japanese Journal of Applied Physics, 1991, 30 (9B): 2236-2239.

[3] Li Y M, Chen W, Xu Q, et al. Relaxor behavior and ferroelectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-KNbO3 lead-free ceramics[J]. Materials Science, 2005, 40(14): 3625-3628.

[4] 谭小平, 梁叔全. 氧化锆-莫来石纳米复相陶瓷的制备[J]. 中南大学学报: 自然科学版, 2005, 36(5): 790-794.TAN Xiao-ping, LIANG Shu-quan. Preparation of ZrO2-mullite nao-composite ceramics[J]. Journal of Central South University: Science and Technology, 2005, 36(5): 790-794.

[5] Wang X X, Lwok K W, Tang X G, et al. Electromechanical properties and dielectric behavior of (Bi1/2Na1/2)(1-1.5x)BixTiO3 lead-free piezoelectric ceramics[J]. Solid State Communications, 2004, 129(5): 319-323.

[6] Tu C S, Sniy I G, Schmid V H. Sequence of dielectric anomalies and high temperature relaxation behavior of Na1/2Bi1/2TiO3[J]. Physics Review B,1994, 49(17): 11550-11554.

[7] Smolenskii G A, Isupov V A, Agranovskaya, et al. Ferroelectrics with diffuse phase transition[J]. Soviet Physics Solid State, 1996, 2(11): 2584-2589.

[8] Qing X, Xingzhong Z. Processing and properties of CeO2-doped ferroelectric (Bi0.5Na0.5)0.94Ba0.06TiO3[J]. Materials Letter, 2006, 60 (7): 1453-1458.

[9] Nagata H, Koizumi N, Takenaka T. Lead-free piezoelectric ceramics of Bi1/2Na1/2TiO3-BiFeO3 system[J]. Key Engineering Materials, 1999, 169(5/6): 37-40.

[10] Nagata H, Takenaka T. Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics[J]. Journal of Europe Ceramics Society, 2001, 21(10/11): 1299-1302.

[11] Saski A, Chiba T. Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 system[J]. Japanese Journal of Applied Physics, 1999, 38(9B): 5564-5567.

[12] Uchino K, Nomura S. Critical exponents of the dielectric constant in diffused phase Transition crystals[J]. Ferroelectric Letter Section,1982, 44(3): 55-56.

[13] Smolensky G A, Agranovus A I. Dielectric properties of complex compound[J]. Soviet Physics Solid State, 1995, 6(1): 1429-1437.

[14] Cross L E. Relaxor ferroelectrics[J]. Ferroelectric,1988, 67(6): 241-246.

[15] Schmidt G. Cubicallys tabilized perovskites[J]. Ferroelectric, 1990, 104(4): 205-216.

[16] Westphal V, Kleemann W. Diffuse phase transitions and random-field-induced domain states of the relaxor ferroelectric P b(Mg2/3Nb1/3O3[J]. Physics Review Letter, 1992, 68(8): 847-850.

[17] 姚 熹, 陈至立. 弛豫型铁电体[J]. 压电与声光, 1984, 6(2): 1-11.YAO Xi, CHEN Zhi-li. Relaxor ferroelectrics[J]. Piezoelectrics & Acoustooptics, 1984, 6(2): 1-11.

[18] 张栋杰. 弛豫铁电体的弛豫性结构研究[J]. 功能材料, 2005, 36(7): 1017-1019.