中国有色金属学报

文章编号:1004-0609(2007)08-1297-05

TiB2和TiB弹性性质的理论计算

姚  强,邢  辉,孟丽君,孙  坚

 (上海交通大学 材料科学与工程学院,上海 200240)

摘 要:

采用基于密度函数理论的赝势平面波方法和广义梯度近似对TiB2和TiB化合物的弹性性质和电子结构进行了理论计算,并用Voigt-Reuss-Hill方法计算得到多晶体的弹性模量和切变模量。结果表明:TiB2和TiB的弹性模量分别为599 GPa和443 GPa,切变模量分别为268.5 GPa和193.5 GPa,Pugh 定律和泊松比等经验判据表明TiB2比TiB脆性更大;并从这两种化合物的电子结构对其弹性性质的差异进行了讨论。

关键词:

弹性性质电子结构第一性原理

中图分类号:TG 146.2       文献标识码:A

Theoretical calculation of elastic properties of TiB2 and TiB

YAO Qiang, XING Hui, MENG Li-jun, SUN Jian

(School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract: First-principles calculations were carried out to investigate the elastic properties and electronic structure of TiB2 and TiB, using the method of ultrasoft pseudopotential within the generalized gradient approximation based on density functional theory. The moduli of the polycrystals for TiB2 and TiB were calculated from the theoretical elastic constants by Voigt-Reuss-Hill averaging scheme. The calculated results of elastic properties agree well with the experimental values and those calculated in the literature. Based on several empirical criterions of Pugh rule and Poisson’s ratio ν, TiB2 and TiB are brittle in nature, and the brittleness of TiB2 is higher than that of TiB. The difference in elastic properties between TiB2 and TiB is discussed with their electronic structures.

Key words: elastic properties; electronic structure; first-principles

                    

硼化物具有许多优良的物理及力学特性,近年来一直备受人们的关注,钛硼化物就是其中的一种[1?3]。TiB2具有熔点高、弹性模量和硬度高等特点,作为硬质材料或复合材料增强体已经得到广泛应用[4];TiB可以在钛基复合材料中作为增强体使用而受重视[5]。TiB2和TiB化合物都可以作为增强体材料使用,主要是因为其高弹性模量特性。一般材料的弹性模量可以通过实验方法测得,但对于难以测试的块体材料(如TiB)或材料中析出相的弹性模量存在一定困难。近年来,由于第一性原理对材料弹性性质的理论计算结果与实验值有很好的一致性,已成为研究材料弹性性质的重要手段[6?12]。目前基于密度函数理论的第一性原理计算方法主要有赝势平面波(PPW)和全势线性缀加平面波(FLAPW)两种,因为赝势平面波方法的计算量明显小于全势线性缀加平面波方法,所以在计算案例不涉及到原子近核区域性质时,可采用赝势平面波方法以节省计算时间,同时可获得足够精确的计算结果。本文作者采用赝势平面波方法和广义梯度近似条件对TiB2和TiB的弹性性质进行系统的研究,并从电子结构对这二种化合物弹性性质的差异进行分析和讨论。

1  计算方法

采用基于密度函数理论(DFT)的赝势平面波方 法[13],并采用广义梯度近似(GGA)来处理交换关联能,交换关联势取Perdew-Burke-Ernzerhof (PBE)形式[14]。采用超软赝势,分别将Ti的3s23p63d24s2和B的2s22p1当作价电子,其它轨道的电子则视为芯电子。平面波截断能取400 eV,倒空间中k点间的距离选为0.4 nm?1。采用Broyden-Fletcher-Goldfarb-Shanno (BFGS)方法对晶胞的晶格常数和晶胞内各原子所占据的具体位置进行了充分的驰豫优化计算[15]。自洽循环计算的能量收敛值设为1×10?6 eV/atom,各原子间相互作用力低于0.02 eV/nm。TiB2属于六方结构,其空间群为P6/mmm,单胞中含有3个原子[16];而TiB属于正交结构,空间群为Pnma,单胞中含有8个原子[17]。TiB2和TiB的晶体结构模型如图1和2所示。

图1  TiB2的晶体结构

Fig.1  Crystal structure of TiB2

图2  TiB的晶体结构

Fig.2  Crystal structure of TiB

不同晶系的晶体具有不同数量的独立弹性常数。六方晶系的TiB2具有5个独立的弹性常数(C11,C12,C13,C33和C44),而正交晶系的TiB则具有9个独立的弹性常数(C11,C22,C33,C12,C13,C23,C44,C55和C66)。为了计算晶体的弹性常数,可先对晶胞进行不同的弹性变形,然后算出变形后的能量,并通过此能量与未变形晶胞的能量差,求出弹性应变能,进而利用弹性常数与应变能的关系计算得到弹性常数。弹性应变能计算式为

对TiB2而言,可采用如下两种变形模式:1) e3 =x;2) e1=e4=x。而为求TiB的弹性常数,则要采用以下3种变形模式: 1) e1= e4=x;2) e2=e5=x;3) e3=e6=x。

2  计算结果与讨论

2.1  弹性性质

首先对TiB2和TiB晶胞进行晶格常数和原子位置优化,优化后得到的平衡晶格常数见表1。从表1可以看出,TiB2的平衡晶格常数为a=0.300 6 nm, c=0.321 1 nm,与实验值相近;同样TiB的平衡晶格常数也与实验值吻合。

采用优化后的TiB2和TiB晶胞计算其弹性常数,计算结果列于表2和表3。采用计算得到的弹性常数可以计算出TiB2和TiB的体模量K、弹性模量E、切变模量G和泊松比ν等弹性性质参数。在多晶材料弹

表1  TiB2和TiB晶胞的平衡晶格常数

Table 1  Equilibrium and experimental lattice constants for TiB2 and TiB(nm)

表2  TiB2晶体的弹性常数

Table 2  Calculated elastic constants for TiB2(GPa)

表3  TiB晶体的弹性常数

Table 3  Calculated elastic constants for TiB(GPa)

性模量的理论估算方面,Hill通过极值原理证明,Voigt和Reuss模型的计算结果是弹性常数的上下限。Hill模型则将Voigt和Reuss模型的计算结果取一个简单的算术平均即VRH平均,其结果和实际测定值更为一致[22]。Hill模型即VRH平均法计算多晶体材料体模量K和切变模量G的计算式为

对六方晶系的晶体,采用Voigt和Reuss模型计算K和G的计算式为


采用Voigt和Reuss模型计算正交晶系晶体的K和G的计算为

式中  Sij为Cij的逆矩阵。

弹性模量E和泊松比ν的计算式为

采用上述公式计算出的TiB2和TiB材料的弹性模量、切变模量、体模量和泊松比见表4。

从表2可以看出,本文采用基于密度函数理论(DFT)的赝势平面波方法关于TiB2弹性常数的计算结果与实验值基本吻合。从表4可以看出,TiB2的切变模量、体模量和弹性模量都明显大于TiB材料。TiB的弹性模量虽比TiB2低,但相对于一般金属材料而言其模量仍是很高的,如纯钛的弹性模量仅在120 GPa左右。TiB2材料的弹性模量、切变模量和体模量的计算值均略大于实验值。Ormeci等[23]在其它晶体材料的计算中也发现有类似的结果,并认为目前第一性原理的计算方法会高估原子的结合强度,从而导致计算得到的晶胞平衡体积比实验值小[23];而且由于第一性原理计算所得结果均是在0 K基态条件下的,所以弹性模量的计算值通常大于实验值。目前虽还没有TiB材料弹性模量的实验测量结果,但是有学者通过测量不同含量TiB的钛基复合材料的弹性模量来近似推算TiB的模量,TiB多晶材料的弹性模量和切变模量估算值分别为371 GPa和169 GPa[19],均低于本文理论计算值。应该指出关于TiB的弹性模量和切变模量的第一性原理计算结果具有更高的正确性。上述计算结果还表明本文采用赝势平面波方法计算得到的TiB2和TiB的弹性常数和弹性性质与Panda等人采用全势线性缀加平面波方法计算得到的结果相近。


表4  TiB2和TiB材料的体模量、切变模量、弹性模量和泊松比

Table 4  Bulk moduli, shear moduli, elastic moduli(Gpa) and Poisson’s ratio for TiB2 and TiB


2.2  电子结构

为了揭示TiB和TiB2具有不同弹性性质的物理本质,本文计算了TiB和TiB2的总态密度(DOS)和分态密度分布(PDOS)。图3和图4所示分别为TiB和TiB2的态密度分布计算结果,其中能量值在0 eV位置处的垂直实线表示Fermi能的位置。从图3和图4可以清楚地看出存在着一个能区分出DOS中的高能反键态和低能成键态区域的峰谷,并且在TiB2的DOS图中此峰谷更加明显。由图3可知,TiB的总态密度主要由Ti原子的3d态和B原子的2p态杂化而成;并且在DOS靠近Fermi面的低能区域,Ti原子的3d态的贡献占主导地位。但由图4可以看出,虽然TiB2的总态密度也主要由Ti原子的3d态和B原子的2p态杂化而形成,但在DOS靠近Fermi面的低能成键区域,B原子的2p态的贡献占主导地位。这是因为B原子的电负性高于Ti原子,在TiB2中Ti—B离子键的键合能力比B—B共价键的键合能力弱,Panda等[19?20]在研究中也得出类似的结论[19?20]。另外,结合图3和图4还可以看出,在TiB2中Ti原子的3d态和B原子的2p态的杂化程度比TiB高。由于上述电子结构的差异,决定了TiB2的弹性模量比TiB的高。

Pugh[24]曾提出过一个预测材料的延/脆性的经验判据,即通过切变模量 G 与体模量K的比值来判断金属材料的延性或脆性。如果这一比值 G/K<0.5,材料呈延性;反之,材料则呈脆性。这一判据已被广泛应用于分析金属间化合物和类金属间化合物的延性或脆性。从表4可以看出,TiB2和TiB的G/K值都远大于0.5,说明它们都是具有很大脆性的化合物,比较而言,TiB2的脆性更高一些。另外,泊松比ν的大小也可用来衡量金属和金属间化合物的脆性。对延性材料而言,泊松比ν一般为1/3;而脆性材料的泊松比ν一般小于1/3。由表4可知,材料TiB2和TiB的泊松比ν远小于1/3,所以再次说明TiB2和TiB都是具有很大脆性的化合物材料。

图3  TiB的态密度计算结果

Fig.3  Density of states of TiB

图4  TiB2的态密度计算结果

Fig.4  Density of states of TiB2

3  结论

1) TiB2的弹性模量和切变模量分别为599 GPa和268.5 GPa,TiB的弹性模量和切变模量分别为443 GPa和193.5 GPa,该计算结果与已报道的实验结果基本吻合;Pugh 定律和泊松比等经验判据还表明TiB2比TiB脆性更大。

2) TiB2和TiB的总态密度均主要由Ti原子的3d态和B原子的2p态杂化而形成;但在Fermi能附近低能区域,TiB2是B原子的2p态占主导地位;而TiB则是Ti原子的3d态占主导地位。另外TiB2中Ti原子的3d态和B原子的2p态的杂化程度比TiB的高。上述电子结构的差异导致TiB2的弹性模量比TiB的高。

REFERENCES

[1] Han Y F, Dai Y B, Shu D, et al. First-principles study of TiB2(0001) surfaces[J]. Journal of Physics: Condensed Matter, 2006, 18(17): 4197?4205.

[2] Yeh C L, Teng G S. Use of BN as a reactant in combustion synthesis of TiN-TiB2 composites under nitrogen pressure [J].Journal of Alloys and Compounds, 2006, 417(1/2): 109?115.

[3] Qin Y, Zhang D, Lu W J, et al. Oxidation behavior of in situ synthesized (TiB+TiC)/Ti-Al composites[J]. Materials Letters, 2006, 60(19): 2339?2345.

[4] 宋文杰, 钟 晖. TiB2制备方法及其研究新进展[J]. 稀有金属与硬质合金, 2005, 33(2): 47?52.
SONG Wen-Jie, ZHONG Hui. Preparation and the New Development of TiB2[J]. Rare Metals and Cemented Carbides, 2005, 33(2): 47?52.

[5] Feng H B, Zhou Y, Jia D C, et al. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites[J]. Crystal Growth & Design, 2006, 6(7): 1626?1630.

[6] Hong S, Fu C L, Yoo M H. Elastic properties and stacking fault energies of Cr2Ta[J]. Intermetallics, 1999, 7(10): 1169?1172.

[7] 孙 坚,姚 强. ZrCr2 Laves 相弹性性质和堆垛层错能的第一性原理计算[J]. 中国有色金属学报, 2006, 16(7): 1166?1170.
SUN Jian, YAO Qiang. First-principles study of elastic properties and stacking fault energies of ZrCr2 Laves phase[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(7): 1166?1170.

[8] 张立云, 彭永进, 金庆华, 等. 单壁纳米管的弹性性质[J]. 物理学报, 2006, 55(8): 4193?4196.
ZHANG Li-yuan, PENG Yong-jing, JIN Qing-hua, et al. Elastic properties of single_wall nanotubes[J]. Acta physica Sinica, 2006, 55(8): 4193?4196.

[9] Chan K S, Lee Y D, Pan Y M. First-principles computations of mechanical properties of Ni2Cr and Ni2Mo[J]. Metall Mater Trans A, 2006, 37(3): 523?537.

[10] Shang S L, Wang Y, Liu Z K. First-principles elastic constants of α- and θ-Al2O3[J]. Applied Physics Letters, 2007, 90(10): 101?909.

[11] Louail L, Maouche D, Roumili A, et al. Calculation of elastic constants of 4d transition metals[J]. Materials Letters, 2004, 58: 2975?2978.

[12] Louail L, Maouche D, Roumili A, et al. Pressure effect on elastic constants of some transition metals[J]. Materials Chemistry and Physics, 2005, 91: 17?20.

[13] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892?7895.

[14] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865?3868.

[15] Fischer T H, Almlof J. General methods for geometry and wave-function optimization[J]. The Journal of Physical Chemistry, 1992, 96: 9768?9774.

[16] Donnay J D H, Ondik H M. Crystal data determinative tables Ⅱ: Inorganic compounds[M]. Washington: Joint Committee on Powder Diffraction Standards, 1973: 116.

[17] Decker B F, Kasper J S. The crystal structure of TiB[J]. Acta Crystallographica, 1954, 7: 77?80.

[18] Post B, Glaser F W, Moskowitz D. Transition metal diborides[J]. Acta Metallurgica, 1954, 2: 20?25.

[19] Panda K B, Ravi Chandran K S. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory[J]. Acta Materialia, 2006, 54: 1641?1657.

[20] Panda K B, Ravi Chandran K S. Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory[J].Computational Materials Science, 2006, 35: 134?150.

[21] Spoor P S, Maynard J D, Pan M J, et al. Elastic constants and crystal anisotropy of titanium diboride[J]. Applied Physics Letters, 1997, 70(15): 1959?1961.

[22] Anderson O L. A simplified method for calculating the Debye temperature from elastic constants[J]. The Journal of Physics and Chemistry of Solids, 1963, 24: 909?917.

[23] Ormeci A, Chu F, Wills J M, et al. Total-energy study of electronic structure and mechanical behavior of C15 Laves phase compounds: NbCr2 and HfV2[J]. Physical Review B, 1996, 54: 12753?12762.

[24] Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Philosophical Magazine, 1954, 45: 823?843.


                                 

基金项目:国家自然科学基金资助项目(50571063);上海市重点基础资助项目(04JC14054)

收稿日期:2007-01-10;修订日期:2007-05-22

通讯作者:孙  坚,教授;电话:021-54745593;E-mail: jsun@sjtu.edu.cn


(编辑 陈爱华)


摘  要:采用基于密度函数理论的赝势平面波方法和广义梯度近似对TiB2和TiB化合物的弹性性质和电子结构进行了理论计算,并用Voigt-Reuss-Hill方法计算得到多晶体的弹性模量和切变模量。结果表明:TiB2和TiB的弹性模量分别为599 GPa和443 GPa,切变模量分别为268.5 GPa和193.5 GPa,Pugh 定律和泊松比等经验判据表明TiB2比TiB脆性更大;并从这两种化合物的电子结构对其弹性性质的差异进行了讨论。

[1] Han Y F, Dai Y B, Shu D, et al. First-principles study of TiB2(0001) surfaces[J]. Journal of Physics: Condensed Matter, 2006, 18(17): 4197?4205.

[2] Yeh C L, Teng G S. Use of BN as a reactant in combustion synthesis of TiN-TiB2 composites under nitrogen pressure [J].Journal of Alloys and Compounds, 2006, 417(1/2): 109?115.

[3] Qin Y, Zhang D, Lu W J, et al. Oxidation behavior of in situ synthesized (TiB+TiC)/Ti-Al composites[J]. Materials Letters, 2006, 60(19): 2339?2345.

[4] 宋文杰, 钟 晖. TiB2制备方法及其研究新进展[J]. 稀有金属与硬质合金, 2005, 33(2): 47?52.SONG Wen-Jie, ZHONG Hui. Preparation and the New Development of TiB2[J]. Rare Metals and Cemented Carbides, 2005, 33(2): 47?52.

[5] Feng H B, Zhou Y, Jia D C, et al. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites[J]. Crystal Growth & Design, 2006, 6(7): 1626?1630.

[6] Hong S, Fu C L, Yoo M H. Elastic properties and stacking fault energies of Cr2Ta[J]. Intermetallics, 1999, 7(10): 1169?1172.

[7] 孙 坚,姚 强. ZrCr2 Laves 相弹性性质和堆垛层错能的第一性原理计算[J]. 中国有色金属学报, 2006, 16(7): 1166?1170.SUN Jian, YAO Qiang. First-principles study of elastic properties and stacking fault energies of ZrCr2 Laves phase[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(7): 1166?1170.

[8] 张立云, 彭永进, 金庆华, 等. 单壁纳米管的弹性性质[J]. 物理学报, 2006, 55(8): 4193?4196.ZHANG Li-yuan, PENG Yong-jing, JIN Qing-hua, et al. Elastic properties of single_wall nanotubes[J]. Acta physica Sinica, 2006, 55(8): 4193?4196.

[9] Chan K S, Lee Y D, Pan Y M. First-principles computations of mechanical properties of Ni2Cr and Ni2Mo[J]. Metall Mater Trans A, 2006, 37(3): 523?537.

[10] Shang S L, Wang Y, Liu Z K. First-principles elastic constants of α- and θ-Al2O3[J]. Applied Physics Letters, 2007, 90(10): 101?909.

[11] Louail L, Maouche D, Roumili A, et al. Calculation of elastic constants of 4d transition metals[J]. Materials Letters, 2004, 58: 2975?2978.

[12] Louail L, Maouche D, Roumili A, et al. Pressure effect on elastic constants of some transition metals[J]. Materials Chemistry and Physics, 2005, 91: 17?20.

[13] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892?7895.

[14] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865?3868.

[15] Fischer T H, Almlof J. General methods for geometry and wave-function optimization[J]. The Journal of Physical Chemistry, 1992, 96: 9768?9774.

[16] Donnay J D H, Ondik H M. Crystal data determinative tables Ⅱ: Inorganic compounds[M]. Washington: Joint Committee on Powder Diffraction Standards, 1973: 116.

[17] Decker B F, Kasper J S. The crystal structure of TiB[J]. Acta Crystallographica, 1954, 7: 77?80.

[18] Post B, Glaser F W, Moskowitz D. Transition metal diborides[J]. Acta Metallurgica, 1954, 2: 20?25.

[19] Panda K B, Ravi Chandran K S. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory[J]. Acta Materialia, 2006, 54: 1641?1657.

[20] Panda K B, Ravi Chandran K S. Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory[J].Computational Materials Science, 2006, 35: 134?150.

[21] Spoor P S, Maynard J D, Pan M J, et al. Elastic constants and crystal anisotropy of titanium diboride[J]. Applied Physics Letters, 1997, 70(15): 1959?1961.

[22] Anderson O L. A simplified method for calculating the Debye temperature from elastic constants[J]. The Journal of Physics and Chemistry of Solids, 1963, 24: 909?917.

[23] Ormeci A, Chu F, Wills J M, et al. Total-energy study of electronic structure and mechanical behavior of C15 Laves phase compounds: NbCr2 and HfV2[J]. Physical Review B, 1996, 54: 12753?12762.

[24] Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Philosophical Magazine, 1954, 45: 823?843.