中南大学学报(自然科学版)

DOI: 10.11817/j.issn.1672-7207.2015.11.004

铜负载螯合树脂对氨氮的解吸及循环吸附性能

周康根,陈泉洲,姜科,胡元娟,彭佳乐

(中南大学 冶金与环境学院,湖南 长沙,410083)

摘 要:

阳离子交换树脂(R-Cu)为新型氨氮吸附剂,研究解吸剂种类、解吸剂加入量、循环流量对R-Cu树脂的氨氮解吸率的影响,得到树脂的氨氮酸解吸动力学方程,通过循环实验,考察解析后R-Cu树脂的氨氮吸附性能。研究结果表明:HCl对氨氮的解吸效率高于CH3COOH和CO2对氨氮的解吸效率;当湿树脂中HCl用量为0.75 mol/L、解析时间为80 min、循环流量为12 L/h时,氨氮解吸率可达93%;氨氮解吸动力学基本符合准二级动力学方程;经吸附–解吸循环5次后,R-Cu树脂对氨氮的吸附性能保持稳定。

关键词:

载铜树脂解吸吸附氨氮循环

中图分类号:X703.1             文献标志码:A         文章编号:1672-7207(2015)11-3999-06

Ammonia-nitrogen desorption and circulating adsorption ability of copper loaded chelating resin

ZHOU Kanggen, CHEN Quanzhou, JIANG Ke, HU Yuanjuan, PENG Jiale

(School of Metallurgy and Environment, Central South University, Changsha 410083, China)

Abstract: Copper loaded chelating resin (R-Cu) was prepared as a novel ammonia-nitrogen absorbent. The effects of the species of desorbent, the dosage of desorbent, and the circulation flow on desorption efficiency of ammonia-nitrogen were studied. The equations of ammonia-nitrogen desorption kinetics were obtained. The circulating ammonia-nitrogen adsorption abilities of the R-Cu resin were investigated by circulation experiment. The results show that the desorption ability of HCl is better than that of CH3COOH and CO2. The desorption efficiency of ammonia-nitrogen is 93% at HCl dosage in resin of 0.75 mol/L, desoprtion time of 80 min, and circulating flow of 12 L/h. The experimental data of ammonia-nitrogen desorption kinetics fit well in the pseudo-second order kinetic equation. The adsorption ability of the R-Cu resin maintains stable in the adsorption-desorption process for 5 cycles.

Key words: Cu-loaded resin; desorption; adsorption; ammonia-nitrogen; circulating

水体中氨氮超标会引起藻类和其他微生物大量繁殖,造成水体富营养化,加快水体溶解氧消耗,导致水生生物死亡。作为一种排放量大、危害严重的水体污染物,氨氮已被我国列为“十二五”减排约束性指标之一。目前,氨氮废水的主要处理方法包括生物法、吹脱法、化学沉淀法、离子交换法等。其中,生物法受到废水碳氮比和微生物的限制,不适于处理氨氮浓度高且可生化性差的废水[1];吹脱法适用于高浓度氨氮废水的预处理[2];化学沉淀法存在药剂消耗量大、处理成本高的问题,仅停留在实验室研究阶段[3];离子交换法具有操作简单、处理高效、占地面积小、吸附剂可以循环利用等优势[4-8],但是当氨氮废水中存在高浓度竞争阳离子时,吸附剂对氨氮的吸附容量显著下降至10 mg/g以内,氨氮去除效果不佳[9-12]。为了提高离子交换法的选择性,一些学者提出了一种配体交换技术[13],即将具有配位吸附性能的过渡金属离子负载于树脂上,制得过渡金属离子负载树脂,再通过金属离子与吸附质之间的配位作用,使气体或水体中的中性配体或阴离子配体转移到树脂上。目前,配体交换技术的研究工作主要集中于水体中阴离子(F-)和有机中性配体(如胺类、酚类)的处理[14-19],较少应用于氨氮的吸附过程。彭佳乐[20]以螯合型阳离子交换树脂作为载体,将Cu2+负载于树脂上,通过苛化改性制备得到了一种对氨氮选择性强、吸附容量大的新型氨氮吸附剂(用R-Cu表示)。在Na+和Ca2+等竞争阳离子存在时,控制吸附pH=9.5~10.0,树脂饱和吸附量可达到19.5~28.8 mg/L,吸附流出液氨氮质量浓度低于15 mg/L,可以达到GB 8978—1996一级排放标准。彭佳乐[20]研究了温度等条件对树脂氨氮吸附性能的影响。在此基础上,本文作者以R-Cu为氨氮配体吸附剂,研究解吸剂种类、pH、解吸时间等对树脂中氨氮解吸率及解吸动力学的影响,通过氨氮吸附–解吸循环实验,考察R-Cu树脂对氨氮的循环吸附性能。

1  材料与方法

1.1  实验药剂与仪器

主要试剂有:CuSO4·5H2O,浓氨水,浓盐酸,NaOH,NaCl,CaCl2,CH3COOH,均为分析纯;CO2,由CO2钢瓶提供;氨氮吸附树脂R-Cu,为负载了铜离子的螯合型阳离子交换树脂,为蓝色球状颗粒,粒度为0.42~1.00 mm所占比例≥95%,装载密度(湿)为0.6 g/L。

主要仪器有:Mettler Toledo 320 pH计;VIS-7220可见光分光光度计;SHZ-82A水浴恒温振荡器;101型电热鼓风干燥箱。

1.2  R-Cu的苛化改性

取60 mL原始树脂加至碘量瓶中,在50 ℃下恒温干燥10 h。向碘量瓶中加入NaOH溶液以调节pH=9.0,将碘量瓶置于水浴振荡器中恒温25 ℃,振荡2 h,得到苛化改性后的氨氮吸附剂(简称苛化改性R-Cu)。

1.3  氨氮吸附实验

将湿态苛化改性R-Cu装入小型离子交换柱中(直径1.56 cm)。使用浓氨水配制一定氨氮浓度的水溶液,在流量为0.12 L/h的条件下通过交换柱。以100 mL体积流出液为间隔,取水样分析氨氮质量浓度、pH及铜离子质量浓度,计算苛化改性R-Cu的穿透床体积数(床体积数为流出液体积与交换柱中树脂体积之比)。

1.4  氨氮解吸实验

苛化改性R-Cu树脂吸附氨氮后,需要经过酸解吸和水洗两个过程进行氨氮解吸。解吸装置由1个小型流化床(高为1 m,直径为4.5 cm)、1个流量计和1个磁力泵组成。

酸解吸过程:在流化床中加入待解吸的树脂和解吸剂,保持流化床中溶液体积为800 mL,开启磁力泵并调节循环流量,每隔10 min测定解吸液pH、氨氮质量浓度和铜离子质量浓度。当解吸液pH基本不变时关闭磁力泵,将流化床中溶液放出直至与树脂液面齐平。

水洗过程:向流化床顶部加入去离子水淋洗树脂,以200 mL溶液体积为间隔,在流化床底部取出水,测定出水氨氮质量浓度。

1.5  分析方法

氨氮质量浓度以纳氏试剂分光光度法测定(GB 7479—87),Cu2+质量浓度由二乙基二硫代氨基甲酸钠分光光度法测定。

氨氮酸解析率(R)由下式确定:

R=(ρ1×V1)/(Qv×V0)                     (1)

其中:V0为湿载铜树脂体积,mL;Qv为载铜树脂吸附氨氮量,mg/L;V1为酸解吸液体积,mL;ρ1为解吸液氨氮质量浓度,mg/L。

2  结果与讨论

2.1  解吸剂种类对氨氮解吸效率的影响

当循环流量为20 L/h,每升湿树脂中解吸剂HCl和CH3COOH的加入量均为0.75 mol(记为0.75 mol/L),CO2流量为0.1 L/h时,考察3种解吸剂对R-Cu树脂中氨氮的解吸效果和水洗效果,结果如图1和图2所示。

由图1可知:当解吸剂为HCl和CH3COOH时,随着解吸时间的增加,氨氮解吸率迅速增大,在解析时间为20 min时基本达到平衡,氨氮解吸率分别约为93%和81%,解吸液质量浓度分别为3 280 mg/L和2 560 mg/L。当解吸剂为CO2时,氨氮解吸速度较慢,解析时间为60 min时,氨氮解吸率基本稳定在41%,解吸液氨氮质量浓度约为1 390 mg/L,解吸基本达到平衡。

图1  解吸剂种类对氨氮解吸率的影响

Fig. 1  Influence of desorbent type on desorption rate of ammonia-nitrogen

图2  洗水用量对氨氮水洗效果的影响

Fig. 2  Influence of volume of washing water on elution of ammonia-nitrogen

3种解吸剂的氨氮解吸率由高到低依此为:HCl,CH3COOH,CO2。解吸剂种类对氨氮解吸率的差异可以由解吸液pH的变化解释。当解吸达到平衡时,HCl、CH3COOH和CO2的解吸液pH分别为3.4,5.1和6.8。   

氨氮解吸反应可表示为

        (2)

由式(2)可知:pH降低,有利于氨氮的解吸。因此,CH3COOH和CO2的解吸液由于酸度不足导致解吸效果不佳。

由图2可知:随水洗床体积数的增加,R-Cu树脂上吸附的氨氮进入解吸液,出水氨氮质量浓度迅速降低。经HCl,CH3COOH和CO2解析后的树脂经过3个水洗床体积数后,出水氨氮质量浓度依次为34,36和92 mg/L,水洗液氨氮质量浓度已基本稳定,因此,后续解吸实验中将水洗用量定为3个床体积数。

2.2  解吸剂循环流量对氨氮解吸效率的影响

当湿树脂中解吸剂HCl的加入量为0.75 mol/L,考察循环流量对R-Cu树脂中氨氮的酸解吸效果,结果如图3所示。

图3  解吸剂循环流量对氨氮解吸率的影响

Fig. 3  Influence of desorbent circulation flow on desorption of ammonia-nitrogen by acids

由图3可知:当解吸时间为80 min时,解吸液氨氮质量浓度基本稳定,氨氮解吸率在93%左右,循环流量对氨氮解吸速率没有明显影响;随着解析时间的增大,解吸液中铜离子质量浓度呈先升高后降低的趋势。其原因在于:解吸初期,解吸液初始H+浓度较高,R-Cu树脂上部分铜离子被H+取代进入解吸液,导致铜离子质量浓度增大;随着R-Cu树脂中氨氮的解吸,解吸液中氨氮质量浓度逐渐升高而H+浓度逐渐降低,因此,解吸液中的铜离子再次与H+发生交换吸附并进入树脂,导致解吸液铜离子质量浓度下降。

当酸解吸达到平衡,循环流量为6,12和20 L/h时,解吸液中铜离子质量浓度分别为298.64,174.45和182.20 mg/L。可见在较低的循环流量下,不利于脱落的铜离子重新被R-Cu树脂的吸附。因此,后续酸解吸实验中循环流量定为12 L/h。

2.3  解吸剂加入量对氨氮解吸效率的影响

当解吸剂为HCl,循环流量为12 L/h时,考察HCl加入量对R-Cu树脂中氨氮的解吸效果,结果如图4和图5所示。

图4  湿树脂中HCl用量对氨氮解吸率的影响

Fig. 4  Influence of HCl dosage in resin on desorption of ammonia-nitrogen

图5  湿树脂中HCl用量对解吸液铜离子质量浓度的影响

Fig. 5  Influence of HCl dosage in resin on copper mass concentration of effluent

由图4可知:湿树脂中HCl加入量的变化对氨氮解吸平衡时间影响不大,当解吸时间为80 min时,解吸液氨氮质量浓度基本稳定;当HCl加入量为0.60,0.68,0.72,0.75和0.83 mol/L时,氨氮解吸率分别为78.89%,88.32%,92.13%,94.08%和93.70%,可见随着HCl加入量的增大,氨氮解吸率呈增大的趋势。但HCl加入量继续增大,氨氮解吸率始终无法达不到100%,主要原因是解吸液中的氨氮以NH4+形态为主,而NH4+与树脂上的H+存在离子交换平衡,导致氨氮无法完全解吸。

由图5可知:随着HCl加入量的增大,解吸液中铜离子质量浓度也逐渐增大,说明R-Cu树脂上脱落的铜离子越多,树脂载铜量降低,氨氮吸附性能下降。因此,为了保证较高的氨氮解吸率同时减少R-Cu树脂上铜离子的脱落,在后续循环吸附实验中,湿树脂中HCl加入量定为0.75 mol/L。

2.4  氨氮酸解吸动力学

苛化改性R-Cu树脂吸附氨氮后的酸解吸动力学可以用准一级和准二级动力学方程来描述,分别如式(3)和式(4)所示[21]

            (3)

               (4)

其中:Re和Rt分别为平衡时的氨氮解吸率和t时刻氨氮瞬时氨氮解吸率;k1和k2分别为准一级和准二级动力学方程常数。

根据式(3)和(4),k1,k2和qe可以由lg(Re-Rt)–t图和t/Rt–t图的截距和斜率计算,如表1所示。

由表1可知:准一级动力学方程的拟合曲线相关系数R2=0.719~0.913,准二级动力学方程的拟合曲线相关系数R2=0.792~0.978,相对而言,准二级动力学方程更适用于描述载铜螯合树脂中氨氮的解吸动力学过程。

根据上述研究结果,苛化改性R-Cu树脂吸附氨氮后,可利用HCl进行解吸,树脂上的NH3与H+反应生成NH4+,从而失去与Cu之间的配位作用,达到氨氮解吸的目的,解吸反应如式(2)所示。

2.5  氨氮循环吸附性能

吸附过程中氨氮溶液质量浓度为1 000 mg/L,Na+质量浓度为10 g/L,水洗流量为14 mL/min,解吸过程中解吸剂为HCl,循环流量为12 L/h,解吸时间为120 min,水洗床体积数为3,得到苛化改性R-Cu树脂循环吸附氨氮的流出曲线,如图6所示。

由图6可知:在5次循环吸附实验中,载铜树脂的穿透床体积数均为7.5,穿透前出水氨氮质量浓度低于15 mg/L,达到GB 8978—1996“污水综合排放标准” 中一级标准的要求。说明R-Cu树脂经HCl解吸和水洗再生后,树脂对氨氮的吸附性能保持稳定,确认使用R-Cu树脂处理氨氮废水的可行性。

表1  氨氮的酸解吸过程中准一级和准二级动力学方程的拟合参数

Table 1  Kinetics parameters of the first-order and second-order equation for desorption of ammonia-nitrogen

图6  R-Cu树脂循环吸附氨氮流出曲线

Fig. 6  Ammonia-nitrogen adsorption elution curves of R-Cu resin

3  结论

1) HCl溶液较适于用作氨氮解吸剂。当湿树脂中HCl用量为0.75 mol/L、解析时间为80 min、循环流量为12 L/h时,氨氮解吸率达到93%。

2) 氨氮解吸动力学基本符合准二级动力学方程。

3) R-Cu树脂经HCl解吸及水洗处理后,在氨氮吸附过程中循环使用5次,其氨氮吸附性能保持稳定,出水氨氮质量浓度低于15 mg/L,达到GB 8978—1996规定的一级标准要求。

参考文献:

[1] 李瑾, 柴立元, 向仁军, 等. 厌氧-好氧活性污泥法(A/O)一体化装置处理生活污水的中试研究[J]. 中南大学学报(自然科学版), 2011, 42(10): 2935-2940.

LI Jin, CHAI Liyuan, XIANG Renjun, et al. Pilot-scale test on domestic waste water treatment using integrative A/O (anaerobic-aerobic sludge) equipment[J]. Journal of Central South University (Science and Technology), 2011, 42(10): 2935-2940.

[2] 曾晓岚, 万鹏, 丁文川, 等. 曝气吹脱预处理渗滤液影响因素的中试研究[J]. 中南大学学报(自然科学版), 2012, 43(8): 3314-3319.

ZENG Xiaolan, WAN Peng, DING Wenchuan, et al. Pilot study on influencing factors of pretreating leachate with ammonia stripping process[J]. Journal of Central South University (Science and Technology), 2012, 43(8): 3314-3319.

[3] Cheng G W, Wang H, Song X W, et al. Pretreatment of high strength ammonia removal from rare-earth wastewater by magnesium ammonium phosphate (MAP) precipitation[J]. Advanced Materials Research, 2012, 496: 42-45.

[4] 张新颖, 吴志超, 王志伟, 等. 天然斜发沸石粉对溶液中NH4+的吸附机理研究[J]. 中国环境科学, 2010, 30(5): 609-614.

ZHANG Xinying, WU Zhichao, WANG Zhiwei, et al. Adsorption characteristics of ammonium ions by natural clinoptilolite powder[J]. China Environmental Science, 2010, 30(5): 609-614.

[5] Ebrahimi S, Roberts D J. Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin[J]. Journal of Hazardous Materials, 2013, 262: 539-544.

[6] Weatherley L R, Miladinovic N D. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite[J]. Water Research, 2004, 38(20): 4305-4312

[7] Li M, Feng C, Zhang Z, et al. Application of an electrochemical-ion exchange reactor for ammonia removal[J]. Electrochimica Acta, 2009, 55(1): 159-164.

[8] Malekian R, Abedi-Koupai J, Eslamian S S, et al. Ion-exchange process for ammonium removal and release using natural Iranian zeolite[J]. Applied Clay Science, 2011, 51(3): 323-329.

[9] Leyva-Ramos R, Monsivais-Rocha J E, A, et al. Removal of ammonium from aqueous solution by ion exchange on natural and modified chabazite[J]. Journal of Environmental Management, 2010, 91(12): 2662-2668.

[10] Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia[J]. Journal of Hazardous Materials, 2005, 117(1): 25-33.

[11] Lei L C, Li X J, Zhang X W. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite[J]. Separation and Purification Technology, 2008, 58(3): 359-366.

[12] Huang H M, Xiao X M, Yan B, et al. Ammonium removal from aqueous solutions by using natural Chinese (Chengde) zeolite as adsorbent[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 247-252.

[13] Helfferich F G. Ligand exchange. Ⅰ: Equilibria[J]. Journal of the American Chemical Society, 1962, 84: 3237-3242.

[14] 苏少龙, 刘建. 沸石分子筛的载铝改性条件及除氟性能研究[J]. 应用化工, 2013, 42(2): 205-209.

SU Shaolong, LIU Jian. Study on modification by loading aluminum of zeolite and its properties of removing fluorine ion from water[J]. Applied Chemical Industry, 2013, 42(2): 205-209.

[15] Viswanathan N, Meenakshi S. Effect of metal ion loaded in a resin towards fluoride retention[J]. Journal of Fluorine Chemistry, 2008, 129(7): 645–653.

[16] zmen F, P A, O. Removal of phosphate by using copper-loaded poly (N-vinylimidazole) hydrogels as polymeric ligand exchanger[J]. Journal of Applied Polymer Science, 2011, 119(1): 613-619.

[17] Barsbay M, Akkas P, , Guven O. Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric[J]. Radiation Physics and Chemistry, 2010, 79(3): 227-232.

[18] Awual M R, Shenashen M A, Yaita T, et al. Efficient arsenic (V) removal from water by ligand exchange fibrous adsorbent[J]. Water Research, 2012, 46(17): 5541-5550.

[19] Ayar A, Gürsal S. On the removal of some phenolic compounds from aqueous solutions by using a sporopollenin-based ligand-exchange fixed bed-Isotherm analysis[J]. Desalination, 2008, 219(1/2/3): 160–170.

[20] 彭佳乐. 新型铜基离子交换树脂处理氨氮废水的研究[D]. 长沙: 中南大学冶金与环境学院, 2009: 77.

PENG Jiale. Treatment of ammonia-nitrogen wastewater by a novel copper-loaded ion exchange resin[D]. Changsha: Central South University. School of Metallurgy and Environment, 2009: 77.

[21] Ho Y S, McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Process Safety and Environmental Protection, 1998, 76(4): 332-340.

(编辑  杨幼平)

收稿日期:2014-12-08;修回日期:2015-03-16

基金项目(Foundation item):国家自然科学基金资助项目(51174238);水体污染控制与治理科技重大专项(20102X07212-008) (Project(51174238) supported by the National Natural Science Foundation of China; Project(20102X07212-008) supported by the Major Science and Technology Program for Water Pollution Control and Treatment)

通信作者:周康根,博士,教授,从事废水处理及冶金环境工程等研究;E-mail: zhoukg63@163.com

摘要:以铜负载螯合型阳离子交换树脂(R-Cu)为新型氨氮吸附剂,研究解吸剂种类、解吸剂加入量、循环流量对R-Cu树脂的氨氮解吸率的影响,得到树脂的氨氮酸解吸动力学方程,通过循环实验,考察解析后R-Cu树脂的氨氮吸附性能。研究结果表明:HCl对氨氮的解吸效率高于CH3COOH和CO2对氨氮的解吸效率;当湿树脂中HCl用量为0.75 mol/L、解析时间为80 min、循环流量为12 L/h时,氨氮解吸率可达93%;氨氮解吸动力学基本符合准二级动力学方程;经吸附–解吸循环5次后,R-Cu树脂对氨氮的吸附性能保持稳定。

[1] 李瑾, 柴立元, 向仁军, 等. 厌氧-好氧活性污泥法(A/O)一体化装置处理生活污水的中试研究[J]. 中南大学学报(自然科学版), 2011, 42(10): 2935-2940.

[2] 曾晓岚, 万鹏, 丁文川, 等. 曝气吹脱预处理渗滤液影响因素的中试研究[J]. 中南大学学报(自然科学版), 2012, 43(8): 3314-3319.

[3] Cheng G W, Wang H, Song X W, et al. Pretreatment of high strength ammonia removal from rare-earth wastewater by magnesium ammonium phosphate (MAP) precipitation[J]. Advanced Materials Research, 2012, 496: 42-45.

[4] 张新颖, 吴志超, 王志伟, 等. 天然斜发沸石粉对溶液中NH4+的吸附机理研究[J]. 中国环境科学, 2010, 30(5): 609-614.

[5] Ebrahimi S, Roberts D J. Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin[J]. Journal of Hazardous Materials, 2013, 262: 539-544.

[6] Weatherley L R, Miladinovic N D. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite[J]. Water Research, 2004, 38(20): 4305-4312

[7] Li M, Feng C, Zhang Z, et al. Application of an electrochemical-ion exchange reactor for ammonia removal[J]. Electrochimica Acta, 2009, 55(1): 159-164.

[8] Malekian R, Abedi-Koupai J, Eslamian S S, et al. Ion-exchange process for ammonium removal and release using natural Iranian zeolite[J]. Applied Clay Science, 2011, 51(3): 323-329.

A, et al. Removal of ammonium from aqueous solution by ion exchange on natural and modified chabazite[J]. Journal of Environmental Management, 2010, 91(12): 2662-2668." target="blank">[9] Leyva-Ramos R, Monsivais-Rocha J E, A, et al. Removal of ammonium from aqueous solution by ion exchange on natural and modified chabazite[J]. Journal of Environmental Management, 2010, 91(12): 2662-2668.

Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia[J]. Journal of Hazardous Materials, 2005, 117(1): 25-33." target="blank">[10] Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia[J]. Journal of Hazardous Materials, 2005, 117(1): 25-33.

[11] Lei L C, Li X J, Zhang X W. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite[J]. Separation and Purification Technology, 2008, 58(3): 359-366.

[12] Huang H M, Xiao X M, Yan B, et al. Ammonium removal from aqueous solutions by using natural Chinese (Chengde) zeolite as adsorbent[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 247-252.

[13] Helfferich F G. Ligand exchange. Ⅰ: Equilibria[J]. Journal of the American Chemical Society, 1962, 84: 3237-3242.

[14] 苏少龙, 刘建. 沸石分子筛的载铝改性条件及除氟性能研究[J]. 应用化工, 2013, 42(2): 205-209.

[15] Viswanathan N, Meenakshi S. Effect of metal ion loaded in a resin towards fluoride retention[J]. Journal of Fluorine Chemistry, 2008, 129(7): 645–653.

zmen F, P A, O. Removal of phosphate by using copper-loaded poly (N-vinylimidazole) hydrogels as polymeric ligand exchanger[J]. Journal of Applied Polymer Science, 2011, 119(1): 613-619." target="blank">[16] zmen F, P A, O. Removal of phosphate by using copper-loaded poly (N-vinylimidazole) hydrogels as polymeric ligand exchanger[J]. Journal of Applied Polymer Science, 2011, 119(1): 613-619.

, Guven O. Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric[J]. Radiation Physics and Chemistry, 2010, 79(3): 227-232." target="blank">[17] Barsbay M, Akkas P, , Guven O. Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric[J]. Radiation Physics and Chemistry, 2010, 79(3): 227-232.

[18] Awual M R, Shenashen M A, Yaita T, et al. Efficient arsenic (V) removal from water by ligand exchange fibrous adsorbent[J]. Water Research, 2012, 46(17): 5541-5550.

[19] Ayar A, Gürsal S. On the removal of some phenolic compounds from aqueous solutions by using a sporopollenin-based ligand-exchange fixed bed-Isotherm analysis[J]. Desalination, 2008, 219(1/2/3): 160–170.

[20] 彭佳乐. 新型铜基离子交换树脂处理氨氮废水的研究[D]. 长沙: 中南大学冶金与环境学院, 2009: 77.

[21] Ho Y S, McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Process Safety and Environmental Protection, 1998, 76(4): 332-340.