中国有色金属学报

文章编号:1004-0609(2012)03-0660-09

哀牢山带大皮甲岩体的地质地球化学特征及形成构造环境

刘继顺1, 2,吴自成1, 2, 3,董  新1, 2, 3,刘文恒1, 2

(1. 中南大学 有色金属成矿预测教育部重点实验室,长沙 410083;

2. 中南大学 地球科学与信息物理学院,长沙 410083;3. 甘肃有色金属地质研究所,兰州 730000)

摘 要:

哀牢山深变质岩带大皮甲小岩体的岩石类型主要为二云二长花岗岩。w(SiO2)的平均值为72.42%,   A/CNK>1.1(平均值1.17),K2O/Na2O的平均值为2.18,里特曼指数(σ)为1.76~4.19(平均值3.02),分异指数(DI)为90~92,∑w(REE)为103.34×10-6~247.39×10-6,∑w(LREE)/∑w(HREE)为1.16~7.45,具弱Eu正异常,在原始地幔标准化蛛网图上显示出Nb、P和Ti负异常及K、Rb、Ba、Th和U正异常,具明显的分异结晶作用特征。岩体的地球化学特征属于高硅、过铝、钙碱性花岗岩,具有壳幔混源型花岗岩的特征。经多种相关图解判别,大皮甲岩体为碰撞造山花岗岩类,形成于同碰撞及后造山的构造环境。

关键词:

哀牢山带地球化学构造环境花岗岩

中图分类号:TN305.2       文献标志码:A

Geological, geochemical characteristics and tectonic setting of Dapijia rockbody in Ailaoshan zone

LIU Ji-shun1, 2, WU Zi-cheng1, 2, 3, DONG Xin1, 2, 3, LIU Wen-heng1, 2

(1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education,

Central South University, Changsha 410083, China;

2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;

3. Gansu Institute of Geological for Nonferrous Metals, Lanzhou 730000, China)

Abstract: The Dapijia rockbody in the Ailaoshan zone is composed mainly of two-mica adamellite. The average mass fraction of the rockbody is w(SiO2)=72.42%, A/CNK>1.1 (1.17 on average), K2O/Na2O=2.18 (on average), with Rittmann index σ=1.76-4.19 (2.88 on average), DI=90-92, ∑w(REE)=103.34×10-6-247.39×10-6, ∑w(LREE)/ ∑w(HREE)=1.16-7.45 and δ(Eu)=0.67-1.34. The rockbody shows remarkable negative Nb, P and Ti anomalies as well as positive K, Rb, Ba, Th and U anomalies as shown in the primitive mantle-normalized trace element spider diagrams, suggesting evident fractional crystallization. According to its lithofacies, petrological and geochemical characteristics, the Dapijia rockbody is silica-high and potassium-rich, belonging to peraluminous calc-alkaline crust-mantle mix derived type granites. Various oxide and trace element diagrams for discrimination of tectonic settings reveal that the Dapijia rockbody is orogenic granite formed in an orogenic extensional structural environment.

Key words: Ailaoshan zone; geochemistry; tectonic setting; granite

大皮甲岩体位于云南省元阳县境内,距县城约8 km(见图1)。其大地构造上处于哀牢山深变质带中段,夹持于哀牢山缝合带与红河剪性深大断裂带之间[1],产于下元古界哀牢山群变质岩中。岩体东侧即为菲莫铜钼多金属矿床。而哀牢山变质带作为全球特提斯成矿域的一部分,是极具潜力的铜金多金属找矿远景  区[2]。大红山大型(铁)铜矿床,龙脖河大型铜矿床,老王寨、冬瓜林、金厂和大坪4个大型金矿床,金平铜厂铜钼多金属矿床等均产于此带,且对它们的成因、物质来源及构造环境均有大量研究和论述。唯菲莫铜钼多金属矿床及其与大皮甲岩体在成因上的联系则鲜有论证,这不仅不利于菲莫铜多金属矿床的找矿思路的拓展,而且会影响哀牢山成矿带的认识深度和找矿预测工作。本文作者对哀牢山变质带大皮甲岩体的岩石化学、地球化学、构造环境和岩石成因等进行较深入的研究,有助于哀牢山带高级变质地体演化历史的研究,同时将有助于该区铜钼金多金属矿床找矿思路的拓宽和找矿模型的确立[3]

图1 哀牢山带大皮甲岩体区域地质略图(据1:200 000元阳幅-大鹿马幅区域地质图修编):1—上第三系;2—白垩系下统;   3—侏罗系下统;4—三叠系上统;5—三叠系中统;6—三叠系下统;7—二叠系上统;8—二叠系下统;9—志留系中统;        10—奥陶系下统;11—下元古界哀牢山群乌都坑组;12—下元古界哀牢山群凤港组;13—下元古界哀牢山群阿龙组上岩组;14—下元古界哀牢山群阿龙组下岩组;15—下元古界哀牢山群小羊街组;16—喜山期花岗岩;17—燕山期斜长花岗岩;      18—印支期花岗斑岩;19—印支期花岗岩;20—区域变质矽线石带;21—区域变质石榴石-十字石带;22—区域变质黑云母带;23—铜矿;24—铅锌矿;25—锡矿;26—铁矿;27—锰矿

Fig. 1  Area geological sketch map of Dapijia rockbody in Ailaoshan zone (Modified from 1:200 000 geological map of Yuanyang—Daluma area): 1—Tertiary; 2—Lower Cretaceous; 3—Lower Jurassic; 4—Upper Triassic; 5—Middle Triassic; 6—Lower Triassic; 7—Upper Permian; 8—Lower Permian; 9—Middle Silurian; 10—Lower Ordovician; 11—Paleoproterozoic Ailaoshan group Wudukeng formation; 12—Paleoproterozoic Ailaoshan group Fenggang formation; 13—Paleoproterozoic Ailaoshan group upper Along formation; 14—Paleoproterozoic Ailaoshan group lower Along formation; 15—Paleoproterozoic Ailaoshan group Xiao-yangjie formation; 16—Himalayan granite; 17—Yanshanian plagiogranite; 18—Indosinian granite porphyry; 19—Indosinian granite; 20—Regional metamorphic sillimanite zone; 21—Regional metamorphic garnet-staurolite zone; 22— Regional metamorphic biotite zone; 23—Cu deposit; 24—Zn-Pb deposit; 25—Sn deposit; 26—Fe deposit; 27—Mn deposit

1  地质背景和岩体特征

哀牢山中深变质岩带大致呈北西—南东向,由南西向北东变质程度逐渐加深,依次可划分为黑云母 带、石榴石-十字石带及夕线石带(见图1)。带内岩浆活动发育,大皮甲岩体即位于其深变质岩带。其围岩为下元古界哀牢山群阿龙组下岩组,岩性为一套深变质岩,主要有黑云斜长变粒岩、黑云斜长透辉岩、黑云斜长片麻岩和透辉石大理岩等。岩体与围岩接触带具弱蚀变。矿区内断裂构造十分发育,具多期活动的特点。一级构造主要有红河深大断裂的派生断裂——者那河断裂,具有多期压扭性的构造特征;二级构造主要有NW、NE及近EW向的次级断裂,NW向构造与岩体及矿体在空间上的展布关系密切。

大皮甲岩体由3个小岩体组成,面积约9.6 km2,大致呈透镜状产出,长轴方向为北西西向,最长者约7 km,短者约1 km(见图1)。其岩性为二云二长花岗岩:呈灰白色,花岗结构,块状构造,主要矿物约占99% (质量分数),成分主要为钾长石、斜长石和石英,少量为黑云母和白云母,矿物之间呈镶嵌状。钾长石含量约为36%,粒度0.2~3 mm,自形;斜长石含量约为30%,粒度0.2~2.5 mm,半自形;石英含量约为25%,粒度0.2~2.5 mm,它形;黑云母含量约为5%,粒度0.1~0.2 mm,片状;白云母含量约为3%,粒度0.1~0.5 mm,片状。副矿物含量约为1%左右,成分为磁铁矿和磷灰石,磁铁矿的含量约为1%,粒度≤0.5 mm,微粒状,不透明;磷灰石微量,粒度≤0.15 mm,半自形柱粒状。

2  地球化学特征

用于测试的FM-10、FM-11、FM-18和FM-20     4件二云二长花岗岩样品均采自大皮甲岩体的不同部位,其中:FM-10和FM-11采自地表露头,FM-18和FM-20采自平硐;而FM-1、FM-2和FM-33件深变质岩样品均采自平硐中岩体围岩。

2.1  主量元素特征

大皮甲岩体的SiO2含量约为72.42%,高于中国花岗岩平均值(71.36%)[4]。在花岗岩QAP图解(见图2)上投点均落在二长花岗岩和普通花岗岩区。岩体的全碱含量ALK(Na2O+K2O)在7.31%~10.9%之间; K2O/Na2O为1.29~2.96,平均值为2.18,富钾;低TiO2 (平均值为0.104%);MgO和CaO含量低,平均值分别为0.182%和1.267% (世界花岗岩的平均值分别为0.71%和1.84%);铝饱和指数A/CNK值Al2O3/(CaO+ Na2O+K2O)为1.05~1.29,平均值为1.17,大于1.1,具陆壳重熔型花岗岩的特 点;NK/A((Na2O+K2O)/ Al2O3)值为0.64~0.88,平均值为0.79(见表1)。分异演化程度较高,分异指数DI介于90~92之间。大皮甲花岗岩的里特曼指数值为1.76~4.19,平均值为3.02,其中:2件小于3.3,1件略大于3.3,属于钙碱性系列,略偏碱钙性。

2.2  稀土元素特征

大皮甲岩体的稀土元素总量相差较大,为103.34×10-6~247.39×10-6,平均值188.29×10-6(表2),略低于一般花岗岩稀土元素总量。岩体富轻稀土元素,w(LREE)/w(HREE)=1.16~7.45,(La/Yb)N=1.69~15.76 (La/Sm)N=3.14~5.69,(Gd/Yb)N=0.37~1.07,轻稀土的分馏程度较重稀土为高;具较小的铈负异常(δ(Ce)=0.83~ 0.91)及轻微铕正异常,稀土元素配分曲线呈右倾斜型(见图3[5]),上述特征与下地壳重熔型花岗岩一致,这也在ACF图解(见图4)中得到了印证,以及与围岩黑云斜长变粒岩、黑云斜长透辉岩具有相似的蛛网线趋势,均表明该类花岗岩体主要是由上地幔及下地壳不同程度熔融而形成的[6]

图2  大皮甲岩体的QAP图解:1—富石英花岗岩;2—碱性长石花岗岩;3—花岗岩(a)和二长花岗岩(b);4—花岗闪长岩;5—英云闪长岩

Fig. 2  QAP diagram of Dapijia rockbody: 1—Quartz-rich granite; 2—Alkaline feldspar granite; 3—Granite (a) and adamellite (b); 4—Granodiorite; 5—Tonalite

表1  大皮甲岩体主量元素成分

Table 1  Major element contents of Dapijia rockbody


2.3  微量元素特征

大皮甲岩体在微量元素蛛网图显示,K、Rb、Ba、Th和U强烈富集,Nb、P和Ti显著亏损(见图5[7]),w(Rb)/w(Sr)较高,为1.74~4.22(见表3),明显高于中国上地壳值(0.45)。上述特征表明,岩石为高程度演化岩浆结晶的产物,其Nb、P和Ti显著亏损的特征显示岩浆经历了较强的斜长石、磷灰石和钛铁矿的分离结晶作用。w(Nb)/w(Ta)为5.09~8.77,平均值为7.11, w(Zr)/w(Nb)为7.99~31.73,平均值为15.61。

在利用花岗岩类微量元素来研究成岩特性时,常用Nb*=2NbN/(KN+LaN),Sr*=2SrN/(CeN+NdN),P*=2PN/ (NdN+HfN),Ti*= 2TiN/(SmN+TbN)参数值探讨成岩物质来源及岩体之下的地幔特性;用Zr*=2ZrN/(SmN+TbN),Hf*=2HfN/(SmN+TbN),K*=2KN/(TaN+LaN)参数值特征探讨成岩物质来源,成岩所处的构造环境及岩体之下的地幔特性[8]。大皮甲岩体Nb*平均为0.05,Sr*平均为0.58,P*平均为0.02,Ti*平均为0.15,其值均小于1,表明花岗岩体成岩物质主要来源于地壳,岩体之下为贫钛的亏损地幔;岩体Zr*的平均值为1.46,Hf*的平均值为1.80,K*的平均值为6.85,其参数值均大于1,同样表明岩体成岩物质主要来源于下地壳,且同化混杂幔源物质,岩体之下为亏损地幔。

表2  大皮甲岩体稀土元素成分

Table 2  Rare earth element contents of Dapijia rockbody


图3  大皮甲岩体和围岩稀土元素配分模式图(球粒陨石数据据文献[5])

Fig. 3  Chondrite-normalized REE patterns of Dapijiarockbody and its wallrocks (Chondrite data from Ref. [5])


图4  大皮甲岩体的ACF图解

Fig. 4  ACF diagram of Dapijia rockbody

图5  大皮甲岩体和围岩原始地幔标准化微量元素蛛网图(原始地幔数据引自文献[7])

Fig. 5  Primitive mantle-normalized trace element spider diagram of Dapijia rockbody and its wallrocks (Primitive mantle data from Ref. [7])

3  岩石成因和构造环境

大皮甲岩体在花岗岩成因分类ACF图解中样点多落入“I”型花岗岩区,少量落入“S”型花岗岩区,稀土元素特征具弱铕正异常,说明其岩浆来源主要为幔源及下地壳[9-10]。岩体的A/CNK>1.1、富轻稀土元素、高的Rb、Ba、K、Th和U及低的Nb、P和Ti等特征表明岩体同时具有地壳重熔物质加入[6]。从特征参数Nb*、Sr*和Ti*均小于1及Zr*、Hf*和K*均大于1的特点也可以得出相同的结论[8],因此,根据地质和地球化学特征大皮甲岩体可确定为壳幔混熔型花岗岩体,为壳幔物质不同程度混熔的产物。其幔源物质可能为下地壳基性火山物质,孟良义[11]也认为显生宙与铜金有关的花岗岩的原岩即为下地壳基性火山物质,具有与基性火山岩相似的稀土元素分布模式,本区的铜金银钼多金属成矿也是上述观点有力的佐证。从近年研究成果来看,大多数地质学家均认同岩浆岩组合和岩石成分与大地构造环境有着密切的关 系[12-19]。许多学者从不同的角度提出了大量有效的构造环境判别图解,在WHIRT和CHAPPELL[12]的w(Nb)/w(Y)、w(Ta)/w(Yb)、w(Rb)/w(Y+Nb)和w(Rb)/ w(Yb+Ta)花岗岩判别图解中,样点大部分落在同碰撞花岗岩区(见图6),图解表明大皮甲岩体具有同碰撞花岗岩的特点。在MANIAR和PICCOLI[13]的4组图解中所有样点几乎全部落入后造山花岗岩区(见图7),说明岩体在构造演化阶段上部分形成于大洋闭合后的挤压造山阶段。其形成机制可能为:新生代印度板块向北碰撞,造成古特提斯洋消失,碰撞造山过程中由地壳加厚热导致上地幔及下地壳等深部物质部分熔融,后碰撞阶段红河、哀牢山走滑断裂[20]导致的热流值上升引起的深熔作用导致地壳深部物质进一步熔融,后沿红河、哀牢山走滑断裂带两侧次级断裂上侵而形成。综合前面的分析,大皮甲岩体形成的构造环境为“碰撞造山”。

表3  大皮甲岩体微量元素成分

Table 3  Trace element contents of Dapijia rockbody

4  结论

1) 大皮甲岩体的岩石类型主要为二长花岗岩,具有富钾、过铝、钙碱性壳幔混熔型花岗岩特征。

2) 大皮甲岩体的常量元素、稀土元素和微量元素特征显示其成岩物质主要来源于上地幔或下地壳。

图6  花岗岩w(Nb)—w(Y) (a)、w(Ta)—w(Yb) (b)、w(Rb)—w(Y+Nb) (c)和w(Rb)—w(Yb+Ta) (d)判别图解[11]:Syn-COLG—同碰撞花岗岩;VAG—火山弧花岗岩;WPG—板内花岗岩;ORG—洋中脊花岗岩

Fig. 6  w(Nb)—w(Y) (a), w(Ta)—w(Yb) (b), w(Rb)—w(Y+Nb) (c) and w(Rb)—w(Yb+Ta) (d) discrimination diagrams of granites[11]: Syn-COLG—Syn-collisional granite; VAG—Volcanic arc granite; WPG—Within plate granite; ORG—Ocean ridge granite

图7  大皮甲岩体形成构造环境判别图解[12](w(FeO*)=w(FeO)+w(Fe2O3)):IAG—岛弧花岗岩类;RRG—裂谷花岗岩类;CAG—大陆弧花岗岩类;OP—大洋斜长花岗岩类;CEUG—与大陆的造陆抬升有关的花岗岩;CCG—大陆碰撞花岗岩类;POG—后碰撞花岗岩类

Fig. 7  Diagrams for discrimination of tectonic setting of Dapijia small rockbody[12](w(FeO*)=w(FeO)+w(Fe2O3)): (a) w(K2O)— w(SiO2); (b) w(Al2O3)—w(SiO2); (c) w(FeO*)/[w(FeO*)+w(MgO)]—w(SiO2); (d) [w(FeO*)+w(MgO)]—w(CaO); IAG—Island arc granite; RRG—Rift granite; CAG—Continent arc granite; OP—Ocean plagiogranite; CEUG—Continent epeirogenic uplift granite; CCG—Continent collisional granite; POG—Postcollisional granite

3) 多种氧化物与微量元素构造环境判别图解分析结果表明,大皮甲岩体同时具有碰撞期与后造山花岗岩的特点,为新生代印度板块向北碰撞,造成古特提斯洋消失,碰撞造山过程中由地壳加厚热导致上地幔及下地壳等深部物质部分熔融,后碰撞阶段红河、哀牢山走滑断裂导致的热流值上升引起的深熔作用导致地壳深部基性火山物质进一步熔融,后沿红河、哀牢山走滑断裂带两侧次级断裂上侵而形成。

4) 大皮甲岩体为“碰撞造山”构造环境下,经碰撞造山作用形成的侵入岩。

REFERENCES

[1] 王义昭, 李兴林, 段丽兰, 黄志勋, 崔春龙. 三江地区南段大地构造与成矿[M]. 北京: 地质出版社, 2000: 51-112.
WANG Yi-zhao, LI Xin-lin, DUAN Li-lan, HUANG Zhi-xun, CUI Chun-long. Geotectonics and metallogeny in the south Nujiang—Lancang—Jinsha rivers area[M]. Beijing: Geological Publishing House, 2000: 51-112.

[2] 莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1993: 137-239.
MO Xuan-xue, LU Feng-xiang, SHEN Shang-yue, ZHU Qin- wen, HOU Zeng-qian, YANG Kai-hui. Sanjiang Tethyan volcanism and related mineralization [M]. Beijing: Geological Publishing House, 1993: 137-239.

[3] 肖庆辉, 邓晋福, 马大铨, 洪大卫, 莫宣学, 卢欣祥, 汪雄武.花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002: 1-270.
XIAO Qin-hui, DENG Jin-fu, MA Da-quan, HONG Da-wei, MO Xuan-xue, LU Xin-xiang, WANG Xiong-wu. The ways of investigation on granitoides[M]. Beijing: Geological Publishing House, 2002: 1-270.

[4] 黎 彤, 倪守斌. 中国大陆岩石圈的化学元素丰度[J]. 地质与勘探, 1997, 6(1): 13-27.
LI Tong, NI Shou-bin. Element abundances of the continental lithosphere in China[J]. Geology and prospecting, 1997, 6(1): 13-27.

[5] BOYNTON W V. Cosmochemistry of the rare earth elements: meteoraie studies [C]// HEDERSON P. Rare Earth Element Geochemistry. Amsteradam: Elsevier Science, 1984: 63-109.

[6] 李昌年. 火成岩微量元素地球化学[M]. 武汉: 中国地质大学出版社, 1992: 12-95.
LI Chang-nian. Trace element geochemistry of igneous[M]. Wuhan: China University of Geosciences Press, 1992: 12-95.

[7] ANDERSON P L. Chemical composition of the mantle[J]. Geophys Res, 1983, 88: 41-52.

[8] WILSON M. Igneous petrogenesis: A globe tectonic approach [M]. London: Unwin Hyman, 1989: 65-287.

[9] CHAPPELL B W, WHITE A J R. Two contrasting granite type[J]. Pacific Geology, 1974, 8: 173-175.

[10] CHAPPELL B W, WHITE A J R, WYBORN D. The importance of residual source material (retite) in granite petrogenesis[J]. Journal of Petrology, 1987, 28: 1112-1136.

[11] 孟良义. 花岗岩与成矿[M]. 北京: 科学出版社, 1993: 9-118.
MENG Liang-yi. Metallogeny of granite[M]. Beijing: Science Press, 1993: 9-118.

[12] WHITE A J R, CHAPPELL B W. Granitoid types and their distribution in the Lacklan foldbelt, southeast Australia[J]. Mem Geol Soc Am, 1983, 159: 21-34.

[13] MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geol Soc Am Bull, 1989, 101: 635-643.

[14] PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granite rock[J]. J Petrol, 1984, 25: 956-983.

[15] BATCHELOR R A, BOWDEN P. Petrogenitic interpretation of granitiod rock series using multication parameters[J]. Chem Geol, 1985, 48: 43-55.

[16] SYLVESTER P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 29-44.

[17] 涂绍雄, 汪雄武. 20世纪90年代国外花岗岩类研究的某些重大进展[J]. 岩石矿物学杂志, 2002, 21(2): 107-118.
TU Shao-xiong, WANG Xiong-wu. Some significant advances in granitoid researches abroad in 1990s[J]. Acta Petrologica et Mineralogica, 2002, 21(2): 107-118.

[18] PITCHER W S. Granite type and tectonic environment[C]// Mountain Building Processes. London: Academic Press, 1983: 19-40.

[19] BARBARIN B. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting[J]. Geol J, 1990, 25: 227-238.

[20] 罗君烈, 杨友华, 赵 准, 陈吉琛, 杨荆舟. 滇西特提斯的演化及主要金属矿床成矿作用[M]. 北京: 地质出版社, 1994: 1-48.
LUO Jun-lie, YANG You-hua, ZHAO Zhun, CHEN Ji-chen, YANG Jing-zhou. Evolution of the Tethys in western Yunnan and mineralization for main metal deposits[M]. Beijing: Geological Publishing House, 1994: 1-48.

(编辑 陈卫萍)

收稿日期:2011-12-01;修订日期:2012-01-04

通信作者:吴自成,高级工程师,博士研究生;电话:13919195984; E-mail: zichengwu@126.com

摘  要:哀牢山深变质岩带大皮甲小岩体的岩石类型主要为二云二长花岗岩。w(SiO2)的平均值为72.42%,   A/CNK>1.1(平均值1.17),K2O/Na2O的平均值为2.18,里特曼指数(σ)为1.76~4.19(平均值3.02),分异指数(DI)为90~92,∑w(REE)为103.34×10-6~247.39×10-6,∑w(LREE)/∑w(HREE)为1.16~7.45,具弱Eu正异常,在原始地幔标准化蛛网图上显示出Nb、P和Ti负异常及K、Rb、Ba、Th和U正异常,具明显的分异结晶作用特征。岩体的地球化学特征属于高硅、过铝、钙碱性花岗岩,具有壳幔混源型花岗岩的特征。经多种相关图解判别,大皮甲岩体为碰撞造山花岗岩类,形成于同碰撞及后造山的构造环境。

[1] 王义昭, 李兴林, 段丽兰, 黄志勋, 崔春龙. 三江地区南段大地构造与成矿[M]. 北京: 地质出版社, 2000: 51-112.WANG Yi-zhao, LI Xin-lin, DUAN Li-lan, HUANG Zhi-xun, CUI Chun-long. Geotectonics and metallogeny in the south Nujiang—Lancang—Jinsha rivers area[M]. Beijing: Geological Publishing House, 2000: 51-112.

[2] 莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1993: 137-239.MO Xuan-xue, LU Feng-xiang, SHEN Shang-yue, ZHU Qin- wen, HOU Zeng-qian, YANG Kai-hui. Sanjiang Tethyan volcanism and related mineralization [M]. Beijing: Geological Publishing House, 1993: 137-239.

[3] 肖庆辉, 邓晋福, 马大铨, 洪大卫, 莫宣学, 卢欣祥, 汪雄武.花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002: 1-270.XIAO Qin-hui, DENG Jin-fu, MA Da-quan, HONG Da-wei, MO Xuan-xue, LU Xin-xiang, WANG Xiong-wu. The ways of investigation on granitoides[M]. Beijing: Geological Publishing House, 2002: 1-270.

[4] 黎 彤, 倪守斌. 中国大陆岩石圈的化学元素丰度[J]. 地质与勘探, 1997, 6(1): 13-27.LI Tong, NI Shou-bin. Element abundances of the continental lithosphere in China[J]. Geology and prospecting, 1997, 6(1): 13-27.

[5] BOYNTON W V. Cosmochemistry of the rare earth elements: meteoraie studies [C]// HEDERSON P. Rare Earth Element Geochemistry. Amsteradam: Elsevier Science, 1984: 63-109.

[6] 李昌年. 火成岩微量元素地球化学[M]. 武汉: 中国地质大学出版社, 1992: 12-95.LI Chang-nian. Trace element geochemistry of igneous[M]. Wuhan: China University of Geosciences Press, 1992: 12-95.

[7] ANDERSON P L. Chemical composition of the mantle[J]. Geophys Res, 1983, 88: 41-52.

[8] WILSON M. Igneous petrogenesis: A globe tectonic approach [M]. London: Unwin Hyman, 1989: 65-287.

[9] CHAPPELL B W, WHITE A J R. Two contrasting granite type[J]. Pacific Geology, 1974, 8: 173-175.

[10] CHAPPELL B W, WHITE A J R, WYBORN D. The importance of residual source material (retite) in granite petrogenesis[J]. Journal of Petrology, 1987, 28: 1112-1136.

[11] 孟良义. 花岗岩与成矿[M]. 北京: 科学出版社, 1993: 9-118.MENG Liang-yi. Metallogeny of granite[M]. Beijing: Science Press, 1993: 9-118.

[12] WHITE A J R, CHAPPELL B W. Granitoid types and their distribution in the Lacklan foldbelt, southeast Australia[J]. Mem Geol Soc Am, 1983, 159: 21-34.

[13] MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geol Soc Am Bull, 1989, 101: 635-643.

[14] PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granite rock[J]. J Petrol, 1984, 25: 956-983.

[15] BATCHELOR R A, BOWDEN P. Petrogenitic interpretation of granitiod rock series using multication parameters[J]. Chem Geol, 1985, 48: 43-55.

[16] SYLVESTER P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 29-44.

[17] 涂绍雄, 汪雄武. 20世纪90年代国外花岗岩类研究的某些重大进展[J]. 岩石矿物学杂志, 2002, 21(2): 107-118.TU Shao-xiong, WANG Xiong-wu. Some significant advances in granitoid researches abroad in 1990s[J]. Acta Petrologica et Mineralogica, 2002, 21(2): 107-118.

[18] PITCHER W S. Granite type and tectonic environment[C]// Mountain Building Processes. London: Academic Press, 1983: 19-40.

[19] BARBARIN B. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting[J]. Geol J, 1990, 25: 227-238.

[20] 罗君烈, 杨友华, 赵 准, 陈吉琛, 杨荆舟. 滇西特提斯的演化及主要金属矿床成矿作用[M]. 北京: 地质出版社, 1994: 1-48.LUO Jun-lie, YANG You-hua, ZHAO Zhun, CHEN Ji-chen, YANG Jing-zhou. Evolution of the Tethys in western Yunnan and mineralization for main metal deposits[M]. Beijing: Geological Publishing House, 1994: 1-48.