中南大学学报(自然科学版)

DOI: 10.11817/j.issn.1672-7207.2016.01.026

贺兰山北段古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义

刘金科1, 2,张道涵1,魏俊浩1,付乐兵1,谭俊1,王大钊1,施海鹏1,王艺龙1

(1. 中国地质大学 资源学院,湖北 武汉,430074;

2. 宁夏地质工程院,宁夏 银川,750021)

摘 要:

斑状花岗岩进行岩相学、岩石地球化学及锆石U-Pb年代学进行研究,探讨其成因机制及其源岩性质。研究结果表明:似斑状花岗岩具有高物质的量比即n(Al2O3)/n(Na2O+K2O)(记为A/CNK,为1.18~1.29)、低FeOt和MgO质量分数比即w(FeOt)/w(MgO)(小于10)、低P2O5(质量分数为0.15%~0.22%)和高K2O (质量分数为5.09%~5.86%)的地球化学特征,属于典型的强过铝质S型花岗岩。岩石轻稀土富集,轻重稀土分异明显([w(La)/w(Yb)]N= 10.4~153.6),具有明显的Eu负异常(δ(Eu)=0.19~0.49);同时,岩体富集大离子亲石元素(LILE) K和Rb,亏损高场强元素(HFSE) Nb,Ta,Zr,Hf和Ti等。似斑状花岗岩与孔兹岩具有相似的微量和稀土元素地球化学特征,推断其应为孔兹岩部分熔融的产物。较低的w(CaO)/w(Na2O)、较高的w(Rb)/w(Sr)和w(Rb)/w(Ba)暗示孔兹岩的原岩应为泥质岩或是以泥质岩为主的、成熟度较高的沉积岩,反映其当时的沉积环境应为被动大陆边缘,而非活动大陆边缘。似斑状花岗岩LA-ICP-MS锆石U-Pb年龄为(1 922±31) Ma,与孔兹岩带内所记录的1.92~1.90 Ga期间的岩浆-变质事件相吻合,可能反映了构造体制由碰撞挤压到伸展的转变。

关键词:

S型花岗岩孔兹岩带贺兰山北段古元古代地球化学华北克拉通

中图分类号:P611.1          文献标志码:A         文章编号:1672-7207(2016)01-0187-11

Zircon U-Pb age and geochemical characteristics of the Paleoproterozoic S-type granite in the northern part of Helanshan and its geological significance

LIU Jinke1, 2, ZHANG Daohan1, WEI Junhao1, FU Lebing1, TAN Jun1,

WANG Dazhao1, SHI Haipeng1, WANG Yilong1

(1. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China

2. Ningxia Institute of Geological Engineering, Yinchuan 750021, China)

Abstract: Petrographic, geochemical and zircon U-Pb geochronological studies were performed on porphyritic granite in northern part of Helanshan area to discuss its formation mechanism and the nature of its source rocks. The results show that porphyritic granite has high n(Al2O3)/n(Na2O+K2O)(i.e., A/CNK, 1.18-1.29), low w(FeOt)/w(MgO) ratios (less than 10), low P2O5 (mass fraction ranging from 0.15% to 0.22%) and high K2O (mass fraction varying between 5.09% and 5.86%) contents, indicating that it belongs to peraluminous S-type granite. It is enriched in light rare earth elements (LREE) with significant differentiation between LREE and heavy rare earth elements (HREE), and shows markedly negative Eu anomalies (δ(Eu)=0.19-0.49). It is also enriched in large ion lithophile elements (LILE), e.g. K and Rb, and depleted in high field strength elements (HFSE), such as Nb, Ta, Zr, Hf and Ti. The porphyritic granite has similar trace and rare earth element characteristics to those of khondalites, suggesting it could be derived from the partial melting of khondalites. Low w(CaO)/w(Na2O), high w(Rb)/w(Sr) and w(Rb)/w(Ba) suggest that the protolith of khondalites could be pelite, or high mature sedimentary rocks with predominant proportion of pelite, indicating they are deposited in a passive rather than an active continental margin. LA-ICP-MS zircon U-Pb age of porphyritic granite is (1 922±31) Ma, which is contemporaneous with 1.92-1.90 Ga magmatic and metamorphic events in Khondalite Belt, and that reflects the tectonic transformation from compression to extension.

Key words: S-type granite; Khondalite Belt; northern part of Helanshan; Paleoproterozoic; geochemistry; North China Craton

华北克拉通是世界上最古老的克拉通之一,有38.5亿年的演化史[1]。ZHAO等[2]将华北克拉通分为东部陆块、中央碰撞带及西部陆块,西部陆块又可细分为阴山地块、鄂尔多斯地块及其间的孔兹岩带。近东西走向的孔兹岩带,沿集宁—大青山—乌拉山—千里山—贺兰山一线分布,主要由古元古代孔兹岩系、TTG片麻岩和不同性质花岗岩组成,被认为是其南部鄂尔多斯地块与北部阴山地块于2.0~1.9 Ga期间碰撞拼合的产物[2-5]。孔兹岩系主要由一套富铝片麻岩、麻粒岩,石榴子石石英岩、长英质副片麻岩、钙镁硅酸盐岩及大理岩等组成,其原岩通常被认为形成于稳定的大陆边缘[6],而BARBEY等[7-8]则认为其原岩同样可以沉积于活动大陆边缘。以阴山地块与鄂尔多斯地块之间的孔兹岩带为例,多数学者认为其原岩形成于克拉通或被动大陆边缘型盆地[2, 9],而WAN等[10-11]则认为其原岩应形成于活动大陆边缘。孔兹岩原岩的沉积环境争议主要是对其原岩性质不确定导致。在板块拼合造山的过程中,中—下地壳岩石通常会经历多期次的高级变质作用和部分熔融事件,形成了各种类型的变质岩、花岗岩和混合岩。不同的源岩性质会引起熔体组成的差异[12],反之,熔体的地球化学特征可以揭示源岩性质。孔兹岩带内广泛分布的S型花岗岩被认为是阴山地块与鄂尔多斯地块拼合的背景下,孔兹岩部分熔融的产物[3-4, 13-15]。因此,深入分析S型花岗岩的地球化学特征,可以了解孔兹岩原岩的性质,进而揭示其沉积环境。本文作者选取位于华北克拉通内孔兹岩带最西端贺兰山北段的S型花岗岩为研究对象,进行岩相学、地球化学、锆石U-Pb年代学研究,分析其成因机制,探讨孔兹岩原岩性质,以便为研究该区古元古代构造-岩浆演化研究提供参考。

1  区域地质背景

图1所示为研究区大地构造位置和地质图。孔兹岩带位于华北克拉通西部陆块,南北两侧分别为鄂尔多斯地块和阴山地块(图1(a))。贺兰山则位于孔兹岩带最西端,是华北克拉通西北部典型的孔兹岩系出露区(图1(b)),以出现大面积富铝岩系(即贺兰山群)和S型花岗岩为特征[2]。贺兰山群主要由富铝片麻岩、变粒岩组成,夹少量大理岩和钙镁硅酸盐岩夹层,部分地段有基性麻粒岩透镜体[16]。自下而上包括4个岩组,即秃鲁根变粒岩-大理岩组、阿楞呼都格变粒岩组、柳树沟片麻岩组和柳条沟组变粒岩组。这套岩石普遍经历了中高级变质改造,黑云母、石榴子石、矽线石等特征变质矿物广泛出现,局部地区可见紫苏辉石,变质程度普遍达到角闪麻粒岩相,局部达到麻粒岩相。多数变质岩经历了混合岩化改造,使岩石形成浅色矿物和暗色矿物各自集中的条带,或出现大量不规则的浅色脉体[17]

区内花岗质岩石出露广泛,分布面积占1/3以上。耿元生等[17]将贺兰山北段地区出露的花岗岩分为石榴子石花岗岩、斑状—似斑状花岗岩、片麻状黑云母花岗岩、片麻状变质闪长岩和黑云母花岗岩。石榴子石花岗岩是该区出露最广的花岗岩,以中粗粒粒状结构为主,块状至弱片麻状构造,主要由斜长石、石英、微斜长石、黑云母和石榴子石组成。该类花岗岩相当于前人所称的扣笨沟单元[16]。片麻状黑云母花岗岩与变粒岩等变质表壳岩间层产出,许多地区均有出露。斑状-似斑状花岗岩主要出露在该地区的西部和东部,以较多的长石斑晶为特征,主要由斜长石、石英、微斜长石、黑云母和少量角闪石组成,部分地区含有一定数量的石榴子石。该类花岗岩相当于前人所称的浩尧尔单元[16]。黑云母花岗岩主要出露在该区西部,多为片麻状,主要由斜长石、微斜长石(条纹长石)、石英和黑云母组成,不含石榴子石和长石斑晶。片麻状变质闪长岩主要在蒙果特一带,曾被划为蒙果特单元[16]。片麻状闪长岩经过变质改造已成为黑云角闪斜长片麻岩,其变形较强,片麻理发育。

此外,该区还出露大量的辉绿岩脉侵入到孔兹岩和花岗岩中,走向以北西、近东西向为主,少数为近北东走向。具辉绿结构,主要有斜长石和普通辉石构成。该区辉绿岩的形成时代为约1.86 Ga。

图1  研究区大地构造位置和地质图(据文献[2]修改)

Fig. 1  Tectonic location and geological map of study area

2  样品描述

本文5件花岗岩样品均为似斑状花岗岩,采自牛头沟东4~6 km范围内(图1(c))。图2所示为研究区花岗岩野外地质特征及镜下特征。似斑状花岗岩与相邻贺兰山群(孔兹岩)之间呈渐变过渡关系(图2(a)),暗示其属原地或半原地重熔型花岗岩。似斑状花岗岩呈灰-灰白色,块状—片麻状构造,似斑状结构。主要由石英、斜长石、钾长石、黑云母、微斜长石和少量矽线石等组成(图2(b),2(c)和2(d))。其中斜长石占30%~ 35%(体积分数,下同),主要呈大小不等的斑晶产出,多数斑晶粒度在5~15 mm,个别粒度可达3 cm左右。钾长石为条纹长石,占10%~15%,粒度为0.5~ 3 mm,半自形;石英占40%~45%,多呈粒状,粒度为1~4 mm,他形结构;黑云母占5%~10%,片状,在单偏光下为铁褐色。

3  分析方法

本文样品的测试分析均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)完成。主微量、U-Pb年龄分析结果分别如表1[18]和表2所示。

本研究所用常量和微量元素分析样品均经表面去皮清洗粉碎至粒径为0.075 mm。全岩主量元素的分析根据国标GZB/T 4506—2010,采用湿化学方法进行分析。微量元素采用Agilent 7500a ICP-MS(电感耦合等离子体质谱)分析,样品处理如下:先称取粒径为0.075 mm岩石粉末50 mg于Teflon溶样器中,然后采用Teflon溶样弹将样品用HF+HNO3在195 ℃条件下消解48 h,最后将120 ℃条件下蒸干除Si后的样品用质量分数为2%的HNO3 稀释2 000倍定容于干净的聚酯瓶。详细的样品消解处理过程分析精密度和准确度见文献[19]。

图2  研究区花岗岩野外地质特征及镜下特征

Fig. 2  Geological feature and photomicrographs of porphyritic granite from study area

表1  贺兰山北段似斑状花岗岩主量元素和微量元素分析结果

Table 1  Major and trace elements compositions of the porphyroid granite in Helanshan region

表2  样品B2127 LA-ICP-MS锆石U-Pb定年数据

Table 2  LA-ICP-MS zircon U–Pb dating data for the sample B2127

锆石样品在廊坊区域地质矿产调查研究所实验室利用标准技术进行分选。锆石制靶后磨蚀至锆石核部出露然后进行锆石阴极发光(CL)照相以观察锆石的内部结构。锆石U-Pb同位素定年利用LA-ICP-MS(激光剥蚀电感耦合等离子体质谱)同时分析完成。激光剥蚀系统为GeoLas 2005,ICP-MS为Agilent 7500a。具体仪器灵敏度、检出限和分析精密度见文献[20]。每个时间分辨分析数据包括20~30 s的空白信号和50 s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal[19]完成。详细的仪器操作条件和数据处理方法见文献[19]。

4  分析结果

4.1  主、微量元素地球化学

贺兰山北段似斑状花岗岩具有高SiO2(质量分数为72.28%~75.97%)、富Al2O3(质量分数为12.26%~ 14.43%)的特征(表1)。图3所示为研究区似斑状花岗岩TAS,n(Al2O3)/n(Na2O+K2O)-n(Al2O3)/n(CaO+Na2O+K2O) (记为A/CNK-A/NK)和w(K2O)-w(SiO2)图解[21-22],n为物质的量。K2O质量分数较高(5.09%~5.86%),Na2O,CaO和P2O5质量分数相对较低,属于亚碱性过铝质系列花岗岩(图3(a)和3(b))。在w(K2O)-w(SiO2)图解中(图3(c)),样品落入钾玄岩系列与高钾钙碱性系列分界线附近,反映出明显富K(w(K2O)=5.09%~5.86%)的特征。此外,岩石TiO2质量分数在0.12%~0.24%之间,Fe2O3t质量分数在1.22%~2.63%之间,MgO质量分数在0.38%~0.58%之间。

图3  研究区似斑状花岗岩TAS,A/CNK-A/NK和w(K2O)-w(SiO2)图解

Fig. 3  TAS, A/CNK-A/NK and w(K2O)-w(SiO2) diagrams for porphyritic granite in study area

图4所示为贺兰山北段似斑状花岗岩稀土元素球粒陨石标准化配分图和微量元素地幔标准化蛛网图[23]。贺兰山似斑状花岗岩具有较高的稀土含量(质量分数)(∑w(REE)=99.6×10-6~136.4×10-6),轻重稀土分异明显([w(La)/w(Yb)]N=10.4~153.6),具有明显的Eu负异常(δ(Eu)=0.19~0.49) (图4(a))。在微量元素原始地幔标准化图解中(图4(b)),表现出富集大离子亲石元素(LILE) K和Rb,亏损高场强元素(HFSE) Nb,Ta,Zr,Hf和Ti的特征。

图4  贺兰山北段似斑状花岗岩稀土元素球粒陨石标准化配分图和微量元素地幔标准化蛛网图

Fig. 4  Chondrite-normalized REE distribution and primitive mantle-nonroalized trace element patterns for the porphyritic granite in Helanshan region

4.2  锆石U-Pb年龄

图5所示为贺兰山似斑状花岗岩锆石阴极发光图像及U-Pb年龄谐和图。锆石分选自样品B2127,多为自形长柱状,长度为100~250 μm,长宽比为3:1~1.5:1,少量锆石为半自形结构。阴极发光图像表明锆石具有较明显的岩浆型震荡环带结构(图5(a)),表明锆石为岩浆结晶成因。所有分析点的w(Th)/w(U)(0.18~0.67)均大于0.10,也支持其岩浆成因。

利用LA-ICP-MS对锆石核部分析获得20个点的年龄(表2)。除点14外,其余锆石的同位素年龄均落在谐和线上及其附近(图5(b)),获得上交点年龄为(1 957±38) Ma,下交点年龄为(355±230) Ma (平均标准权重偏差MSWD=1.4)。除03、06、14和17这4个点外,其余16个较谐和分析点的w(206Pb)/w(207Pb)加权平均年龄为(1 922±31) Ma (MSWD=1.6),与上交点年龄在误差范围内一致,代表了贺兰山北段地区似斑状花岗岩的侵位年龄。

图5  贺兰山似斑状花岗岩锆石阴极发光图像及U-Pb年龄谐和图

Fig. 5  Cathodoluminescence images and U-Pb concordia diagrams for zircons of sample B2127 from the porphyritic granite in Helanshan region

5  讨论

5.1  似斑状花岗岩源区性质及形成机制

研究区花岗岩A/CNK>1.1,为强过铝质岩石(图3(b)), 且具有低w(FeOt)/w(MgO)(小于10)、低P2O5 (质量分数为0.15%~0.22%)和高K2O(质量分数为5.09%~5.86%)等地球化学特征,显示出典型S型花岗岩的特点。图6所示为A (即Al-Na-K)+ C(即Ca)+F(即Fe2++Mg)的物质的量(n)图解。在n(A)-n(C) -n(F)图解中(图6),似斑状花岗岩样品均投在S型花岗岩区域,且其主微量特征与贺兰山地区S型花岗岩的特征相似(图3(b),3(c),图4和图6),进一步指示其为S型花岗岩。BARBARIN[24-25]将过铝质花岗岩(S型花岗岩)细分为含白云母花岗岩(MPG)和含堇青石富黑云母花岗岩(CPG) 2种类型。MPG富含大量的原生白云母,贫黑云母;而CPG可含有堇青石,富含黑云母。研究区似斑状花岗岩富含黑云母而无白云母(图2(b),2(c)和2(d)),且具有较高的锆饱和温度(高达804°C,表1),显示出典型CPG的特征。岩石中未发现堇青石,这可能与岩体的形成深度有关(≥25 km,GREEN[26])。

图6  n(A):n(C):n(F)图解

Fig. 6  n(A):n(C):n(F) diagram

CHAPPELL[27]认为S型花岗岩是源自于经历一定程度风化的表壳岩石的部分熔融,因此,S型花岗岩的物源主要来自沉积岩。据野外观察,似斑状花岗岩与孔兹岩(变沉积岩)呈渐变过渡接触(图2(a)),暗示其可能为孔兹岩部分熔融的产物。S型花岗岩物质来源判别图解表明,研究区似斑状花岗岩源区可能为变泥质岩(图7),而孔兹岩的原岩正是泥质岩和泥质粉砂岩[28]。似斑状花岗岩与孔兹岩一致的微量和稀土元素地球化学特征也指示孔兹岩可能为似斑状花岗岩的源岩(图4(a)和4(b))。此外,锆石的Hf模式年龄(主要集中在2.2~2.4 Ga之间)与Nd模式年龄(2.2~2.6 Ga)与研究区出露的孔兹岩中碎屑锆石的Hf模式年龄(2.1~2.5 Ga,YIN等[3-4, 11])相吻合,进一步证实研究区S型花岗岩应为广泛出露的孔兹岩系部分熔融的产物。

然而,人们对变质沉积岩的部分熔融机制还有一定的争议。BARBARIN[24-25]曾提出CPG可以由来自地幔的岩浆涌入或底侵引起变质沉积岩熔融而成。PENG等[14-15]也提出类似观点,认为孔兹岩带东部凉城地区同时代(约1.9 Ga)的S型花岗岩应是幔源岩浆底侵背景下的产物,即深部岩浆底侵时的高温导致孔兹岩部分熔融而形成S型花岗岩。DOUCE等[12, 29]认为,底侵的镁铁质岩浆与陆壳的相互作用不仅会导致热量的传递,同样也会促进化学成分的交换。但泥质岩熔体与玄武岩的混合模拟结果表明,研究区花岗岩虽投在混合线之间,但主体上应以泥质岩熔体端元为主(图7(c)和7(d)),而凉城地区S型花岗岩更靠近玄武岩组分端元。这些特征表明在似斑状花岗岩的形成过程中可能没有幔源物质的加入。此外,似斑状花岗岩极低的地质样品与球粒陨石均一库(CHUR)在t时刻的143Nd/144Nd同位素的相对大小εNd(t)(-15.5~-19.7)也不支持幔源物质加入的观点。因此,贺兰山地区S型花岗岩的形成可能与深部岩浆底侵作用关系不大。

相反,在板块汇聚碰撞过程中,地壳通常会增厚,当增厚到大于50 km,由于K,U和Th等元素衰变释放大量的热,会引起增厚的地壳部分熔融,所形成的花岗岩温度通常小于875 ℃[30]。贺兰山地区孔兹岩在变质峰期阶段, 以出现“蓝晶石+条纹长石+石榴石”组合为特征,变质温度为850~870 ℃,压力达到1.4~1.5 GPa , 地壳深度相当于50~60 km[5],具有增厚熔融的基本条件。同时,区内S型花岗岩相对低的锆饱和温度(小于810 ℃,表1)也进一步印证了这一结论。

因此,区内岩体属典型的强过铝质S型花岗岩,可能为板块汇聚碰撞背景下孔兹岩系部分熔融的产物。

图7  研究区似斑状花岗岩物源判别图

Fig. 7 Source discrimination diagrams for porphyritic granite in study area

5.2  孔兹岩原岩性质及其形成背景

对于华北克拉通西北部的孔兹岩系的原岩,通常被认为沉积于稳定大陆边缘环境[2-6, 9, 31]。然而,近年来所获得大量孔兹岩碎屑锆石年龄显示,其原岩主要来自古元古代(2.2~2.0 Ga,YIN等[3-4, 11])物源区,应沉积于2.0~1.95 Ga之间[3-4, 9, 11],经过短暂的沉积,便经历了约1.95 Ga阴山地块与鄂尔多斯地块碰撞拼合,大规模的区域变质作用,局部达到麻粒岩相。由于其较短的沉积时间(小于50 Ma),WAN等[10-11]认为孔兹岩的原岩应形成于活动大陆边缘背景。很明显,2种不同构造背景下形成的孔兹岩系原岩会具有明显的差异,即成熟度高的泥质岩或成熟度低的杂砂岩。

泥质岩和杂砂岩在变质熔融的过程中所产生的熔体有较大的差别[29-30]。由于杂砂岩富长石贫黏土,其产生的熔体往往具有较高的w(CaO)/w(Na2O)(大于0.3),与之相反,泥质岩贫长石富黏土,其产生的熔体具有较低的w(CaO)/w(Na2O)(小于0.3)[30]。同理,Sr和Ba是斜长石的相容元素,而Rb则为不相容元素,因此,杂砂岩产生的熔体常具有较低的w(Rb)/w(Sr)和w(Rb)/w(Ba),而由泥质岩产生的熔体2个比值较 高[30]

研究区似斑状花岗岩样品具有较低的w(CaO)/ w(Na2O)(0.18~0.24)(图7(c)),较高的w(Rb)/w(Sr)(2.2~ 4.1)和w(Rb)/w(Ba) (0.52~1.18)(图7(d)),靠近泥质岩熔体单元,暗示孔兹岩的原岩应为泥质岩。而且贺兰山地区孔兹岩以长石、石英等矿物为主,富含富铝矿物石榴子石、堇青石、矽线石等特征矿物组合,反映其原岩为泥质岩和泥质粉砂岩[28],也支持这一观点。此外,李江海等[31]通过分析华北克拉通中部孔兹岩系的地球化学特征,发现孔兹岩具有w(Th)/w(U)较高,相对富集Rb,Th,U,Pb和K,相对亏损Sr,Ca和Na的特征,认为孔兹岩原岩以泥质岩、页岩为主。孔兹岩系中大多数碎屑锆石都显示出较好的磨圆度[3-4, 32],也反映了其原岩经历较长距离搬运的特点。

综上所述,孔兹岩原岩应是泥质岩或是以泥质岩为主的、成熟度较高的沉积岩,而该套岩性反映当时的沉积环境应为被动大陆边缘,而非活动大陆边缘。火山岩活动通常被认为是活动大陆边缘的重要标志,而在孔兹岩带,至今未有关于古元古代(2.2~2.0 Ga)火山岩的文献报道,也进一步排除了活动大陆边缘的可能。考虑到鄂尔多斯地块是孔兹岩的物源区[32],因此,可以认为鄂尔多斯地块北缘具有被动大陆边缘的特征[3]。而与之对应的是,在阴山地块南缘大青山和乌拉山地区出露晚太古代至古元古代的TTG片麻岩和镁铁质麻粒岩[33],反映其南缘岛弧、陆弧发育,具有活动大陆边缘的特点。

5.3  花岗岩构造意义

近年来,大量的高精度年代学研究发现孔兹岩普遍记录了两期区域变质事件,分别为1.97~1.94 Ga和1.87~1.82 Ga[2-4, 10]。前者被认为是阴山地块与鄂尔多斯地块碰撞拼合的时代[2-4, 10],而后者反映了板块折返或伸展作用所引起的岩浆热事件[3-4]。然而,关于构造体制由碰撞转入到伸展环境的时限讨论较少。SANTOSH等[34]在孔兹岩带东部获得了含假蓝宝石麻粒岩超高温(UHT)变质事件的年龄为1.92 Ga。GUO等[35]则进一步发现这些麻粒岩常与未变质或弱变质的辉长岩脉接触,且辉长岩的w(207Pb)/w(206Pb)加权平均年龄为1.92 Ga,与含假蓝宝石麻粒岩的变质年龄一致,暗示孔兹岩带东部的UHT变质事件与软流圈地幔上涌、镁铁质岩浆底侵有关,暗示伸展体制已开始。在孔兹岩带东部地区,由于软流圈上涌或玄武质岩浆的底侵,势必引起部分地壳发生深熔作用,形成大量1904~1921 Ma的 S型花岗岩[15]。且大青山地区孔兹岩中部分碎屑锆石记录了该期变质事件,变质年龄为1.90~1.92 Ga[10]。而在孔兹岩带西部,除本文所报道的该期岩浆事件外,耿元生等[17]也曾报道贺兰山地区片麻状闪长岩的侵位年龄为1.92 Ga,亦为该期岩浆活动的产物。此外,千里山地区孔兹岩碎屑锆石(变质年龄为(1921±16) Ma,YIN等[3])、巴彦乌拉山地区片麻状花岗岩(变质年龄为(1923±28) Ma;董春艳等[36])也同样记录了该期变质事件。因此,结合前人研究成果,构造体制由碰撞挤压到伸展作用的转换可能发生在1.92~1.90 Ga之间,并引发一定规模的构造热事件,而本文所报道的似斑状花岗岩应是该期事件的产物。

6  结论

1) 贺兰山地区似斑状花岗岩具有高A/CNK值、低w(FeOt)/w(MgO)、低P2O5(质量分数为0.15%~ 0.22%)和高K2O(质量分数为5.09%~5.86%)的地球化学特征,属于典型的强过铝质S型花岗岩,为广泛出露的孔兹岩部分熔融的产物。

2) 似斑状花岗岩具有较低的w(CaO)/w(Na2O),较高的w(Rb)/w(Sr)和w(Rb)/w(Ba),表明孔兹岩的原岩应为泥质岩或是以泥质岩为主的、成熟度较高的沉积岩,反映其当时的沉积环境应为被动大陆边缘,而非活动大陆边缘。

3) 似斑状花岗岩LA-ICP-MS锆石U-Pb年龄为 (1 922±31) Ma,与孔兹岩带内所记录的1.92~1.9 Ga期间的岩浆-变质事件相吻合,可能反映了构造体制由碰撞挤压到伸展的转变。

参考文献:

[1] SONG Biao, NUTMAN A P, LIU Dunyi, et al. 3800 to 2 500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China[J]. Precambrian Research, 1996, 78(1): 79-94.

[2] ZHAO Guochun, SUN Min, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.

[3] YIN Changqing, ZHAO Guochun, SUN Min, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Precambrian Research, 2009, 174(1): 78-94.

[4] YIN Changqing, ZHAO Guochun, GUO Jinghui, et al. U–Pb and Hf isotopic study of zircons of the Helanshan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Lithos, 2011, 122(1): 25-38.

[5] 周喜文, 赵国春, 耿元生. 贺兰山高压泥质麻粒岩—华北克拉通西部陆块拼合的岩石学证据[J]. 岩石学报, 2010, 26(7): 2113-2121.

ZHOU Xiwen, ZHAO Guochun, GENG Yuansheng. Helanshan high-pressure pelitic granulites: petrological evidence for collision event in the Western Block of the North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7): 2113-2121.

[6] Condie K C, Boryta M D, LIU Jinzhong, et al. The origin of khondalite: geochemical evidence from the Archean to early Proterozoic granulite belt in the North China Craton[J]. Precambrian Research, 1992, 59(3): 207-223.

[7] BARBEY P, CAPDEVILA R, HAMEURT J. Major and transition trace element abundances in the khondalite suite of the granulite belt of lapland (fennoscandia): evidence for an early proterozoic flysch belt[J]. Precambrian Research, 1982, 16(4): 273-290.

[8] DALY J S, BALAGANSKY V V, TIMMERMAN M J, et al. Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield[J]. Precambrian Research, 2001, 105(2): 289-314.

[9] XIA Xiaoping, SUN Min, ZHAO Guochun, et al. U–Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications[J]. Geological Magazine, 2009, 146(5): 701-716.

[10] WAN Yusheng, LIU Dunyi, DONG Chunyan, et al. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era[J]. Geological Society of London, Special Publications, 2009, 323(1): 73-97.

[11] DAN W, LI Xianhua, GUO Jinghui, et al. Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin?[J]. Precambrian Research, 2012, 222(12): 143-158.

[12] DOUCE A E P, BEARD J S. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes[J]. Journal of Petrology, 1996, 37(5): 999-1024.

[13] 李正辉, 柳小明, 董云鹏, 等. 贺兰山古元古代同碰撞花岗岩地球化学、 锆石 U-Pb 年代及其地质意义[J]. 岩石学报, 2013, 29(7): 2405-2415.

LI Zhenghui, LIU Xiaoming, DONG Yunpeng, et al. Geochemistry and zircon U–Pb age of the Paleoproterozoic syn-collisional granites in Helanshan region and its geological significance[J]. Acta Petrologica Sinica, 2013, 29(7): 2405-2415.

[14] PENG Peng, GUO Jinghui, WINDLEY B F, et al. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: implications for ridge subduction[J]. Precambrian Research, 2012, 222: 107-123.

[15] 钟长汀, 邓晋福, 万渝生, 等. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S 型花岗岩地球化学特征及锆石SHRIMP年龄[J]. 地球化学, 2007, 36(6): 585-600.

ZHONG Changting, DENG Jinfu, WAN Yusheng, et al. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: geochemical characteristics and zircon SHRIMP dating of S-type granitoids[J]. Geochemica, 2007, 36(6): 585-600.

[16] 胡能高, 杨家喜, 王志博等. 贺兰山变质杂岩的组成及演化[M]. 西安: 西安地图出版社, 1994: 1-121.

HU Nenggao, YANG Jiaxi, WANG Zhibo, et al. The Composition and Evolution of Complex in Helan Mountains[M]. Xi’an Map Publishing House, Xi’an, 1994: 1-121.

[17] 耿元生, 周喜文, 王新社, 等. 内蒙古贺兰山地区古元古代晚期的花岗岩浆事件及其地质意义: 同位素年代学的证据[J]. 岩石学报, 2009, 25(8): 1830-1842.

GENG Yuansheng, ZHOU Xiwen, WANG Xinshe, et al. Late-Paleoproterozoic granite events and their geological significance in Helanshan area, Inner Mongolia: evidence from geochronology[J]. Acta Petrologica Sinica, 2009, 25(8): 1830-1842.

[18] WATSON E B, HARRISON T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth & Planetary Science Letters, 1983, 64(2): 295-304.

[19] LIU Yongsheng, ZONG Keqing, KELEMEN P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247(1): 133-153.

[20] HU Zhaochu, GAO Shan, LIU Yongsheng, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093-1101.

[21] 王成, 孟方, 毛自力. 贺兰山黄旗口花岗岩锆石SHRIMP U-Pb定年和岩石地球化学特征[J]. 宁夏工程技术, 2012, 11(3): 206-213.

WANG Cheng, MENG Fang, MAO Zili. Zircon SHRIMP U-Pb dating technique for Huangqikou granite in Helanshan area and its lithogeochemical characteristics[J]. Ningxia Engineering Technology, 2012, 11(3): 206-213.

[22] 胡能高, 杨家喜. 贺兰山群变质岩的地球化学特征[J]. 矿物学报, 1995, 15(1): 104-110.

HU Nenggao, YANG Jiaxi. Geochemical characteristics of the Helanshan group metamorphic rocks[J]. Acta Mineralogica Sinica, 1995, 15(1): 104-110.

[23] SUN Shensu, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[24] BARBARIN B. Genesis of the two main types of peraluminous granitoids[J]. Geology, 1996, 24(4): 295-298.

[25] BARBARIN B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626.

[26] GREEN T H. Experimental generation of cordierite-or garnet-bearing granitic liquids from a pelitic composition[J]. Geology, 1976, 4(2): 85-88.

[27] CHAPPELL B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated hapogranites[J]. Lithos, 1999, 46(3): 535-551.

[28] 校培喜, 由伟丰, 谢从瑞, 等. 贺兰山北段贺兰山岩群富铝片麻岩碎屑锆石 LA-ICP-MS U-Pb 定年及区域对比[J]. 地质通报, 2011, 30(1): 26-36.

XIAO Peixi, YOU Weifeng, XIE Congrui, et al. LA-ICP-MS U-Pb detrital zircon geochronology of alumina-rich gneiss of the Helanshan complex-group in the northern segment of Helanshan Mountains and regional comparison[J]. Geological Bulletin of China, 2011, 30(1): 26-36.

[29] DOUCE A E P. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society of London, Special Publications, 1999, 168(1): 55-75.

[30] SYLVESTER P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1): 29-44.

[31] 李江海, 钱祥麟, 刘树文. 华北克拉通中部孔兹岩系的地球化学特征及其大陆克拉通化意义[J]. 中国科学: D 辑, 1999, 29(3): 193-203.

LI Jianghai, QIAN Xianglin, LIU Shuwen. Geochemistry of khondalites from the central portion of the North China Craton (NCC): implications for the continental cratonization in the Neoarchaean[J]. Science China: Earth Sciences, 1999, 29(3): 193-203.

[32] XIA Xiaoping, SUN Min, ZHAO Guochun, et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton[J]. Earth and Planetary Science Letters, 2006, 241(3): 581-593.

[33] LIU Xishan, JIN Wei, LI Shuxun, et al. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China[J]. Journal of Metamorphic Geology, 1993, 11(4): 499-510.

[34] SANTOSH M, WILDE S A, LI Jianghai. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: evidence from SHRIMP U-Pb zircon geochronology[J]. Precambrian Research, 2007, 159(3): 178-196.

[35] GUO Jinghui, PENG Peng, CHEN Yi, et al. UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton[J]. Precambrian Research, 2012, 222: 124-142.

[36] 董春艳, 刘敦一, 李俊建, 等. 华北克拉通西部孔兹岩带形成时代新证据: 巴彦乌拉-贺兰山地区锆石SHRIMP定年和Hf同位素组成[J]. 科学通报, 2007, 52(16): 1913-1922.

DONG Chunyan, LIU Dunyi, LI Junjian, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton: new evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(16): 1913-1922.

(编辑  罗金花)

收稿日期:2015-01-06;修回日期:2015-03-01

基金项目(Foundation item):国家自然科学基金资助项目(41302065,41102047);中央高校基本科研业务费专项资金资助项目(CUG120702,CUG120842) (Projects(41302065, 41102047) supported by the National Natural Science Foundation of China; Projects(CUG120702, CUG120842) supported by the Fundamental Research Founds for National University, China University of Geosciences (Wuhan))

通信作者:张道涵,博士研究生,从事矿产普查与勘探研究;E-mail: zhangdaohan163@163.com

摘要:对贺兰山北段似斑状花岗岩进行岩相学、岩石地球化学及锆石U-Pb年代学进行研究,探讨其成因机制及其源岩性质。研究结果表明:似斑状花岗岩具有高物质的量比即n(Al2O3)/n(Na2O+K2O)(记为A/CNK,为1.18~1.29)、低FeOt和MgO质量分数比即w(FeOt)/w(MgO)(小于10)、低P2O5(质量分数为0.15%~0.22%)和高K2O (质量分数为5.09%~5.86%)的地球化学特征,属于典型的强过铝质S型花岗岩。岩石轻稀土富集,轻重稀土分异明显([w(La)/w(Yb)]N= 10.4~153.6),具有明显的Eu负异常(δ(Eu)=0.19~0.49);同时,岩体富集大离子亲石元素(LILE) K和Rb,亏损高场强元素(HFSE) Nb,Ta,Zr,Hf和Ti等。似斑状花岗岩与孔兹岩具有相似的微量和稀土元素地球化学特征,推断其应为孔兹岩部分熔融的产物。较低的w(CaO)/w(Na2O)、较高的w(Rb)/w(Sr)和w(Rb)/w(Ba)暗示孔兹岩的原岩应为泥质岩或是以泥质岩为主的、成熟度较高的沉积岩,反映其当时的沉积环境应为被动大陆边缘,而非活动大陆边缘。似斑状花岗岩LA-ICP-MS锆石U-Pb年龄为(1 922±31) Ma,与孔兹岩带内所记录的1.92~1.90 Ga期间的岩浆-变质事件相吻合,可能反映了构造体制由碰撞挤压到伸展的转变。

[1] SONG Biao, NUTMAN A P, LIU Dunyi, et al. 3800 to 2 500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China[J]. Precambrian Research, 1996, 78(1): 79-94.

[2] ZHAO Guochun, SUN Min, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.

[3] YIN Changqing, ZHAO Guochun, SUN Min, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Precambrian Research, 2009, 174(1): 78-94.

[4] YIN Changqing, ZHAO Guochun, GUO Jinghui, et al. U–Pb and Hf isotopic study of zircons of the Helanshan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Lithos, 2011, 122(1): 25-38.

[5] 周喜文, 赵国春, 耿元生. 贺兰山高压泥质麻粒岩—华北克拉通西部陆块拼合的岩石学证据[J]. 岩石学报, 2010, 26(7): 2113-2121.

[6] Condie K C, Boryta M D, LIU Jinzhong, et al. The origin of khondalite: geochemical evidence from the Archean to early Proterozoic granulite belt in the North China Craton[J]. Precambrian Research, 1992, 59(3): 207-223.

[7] BARBEY P, CAPDEVILA R, HAMEURT J. Major and transition trace element abundances in the khondalite suite of the granulite belt of lapland (fennoscandia): evidence for an early proterozoic flysch belt[J]. Precambrian Research, 1982, 16(4): 273-290.

[8] DALY J S, BALAGANSKY V V, TIMMERMAN M J, et al. Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield[J]. Precambrian Research, 2001, 105(2): 289-314.

[9] XIA Xiaoping, SUN Min, ZHAO Guochun, et al. U–Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications[J]. Geological Magazine, 2009, 146(5): 701-716.

[10] WAN Yusheng, LIU Dunyi, DONG Chunyan, et al. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era[J]. Geological Society of London, Special Publications, 2009, 323(1): 73-97.

[11] DAN W, LI Xianhua, GUO Jinghui, et al. Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin?[J]. Precambrian Research, 2012, 222(12): 143-158.

[12] DOUCE A E P, BEARD J S. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes[J]. Journal of Petrology, 1996, 37(5): 999-1024.

[13] 李正辉, 柳小明, 董云鹏, 等. 贺兰山古元古代同碰撞花岗岩地球化学、 锆石 U-Pb 年代及其地质意义[J]. 岩石学报, 2013, 29(7): 2405-2415.

[14] PENG Peng, GUO Jinghui, WINDLEY B F, et al. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: implications for ridge subduction[J]. Precambrian Research, 2012, 222: 107-123.

[15] 钟长汀, 邓晋福, 万渝生, 等. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S 型花岗岩地球化学特征及锆石SHRIMP年龄[J]. 地球化学, 2007, 36(6): 585-600.

[16] 胡能高, 杨家喜, 王志博等. 贺兰山变质杂岩的组成及演化[M]. 西安: 西安地图出版社, 1994: 1-121.

[17] 耿元生, 周喜文, 王新社, 等. 内蒙古贺兰山地区古元古代晚期的花岗岩浆事件及其地质意义: 同位素年代学的证据[J]. 岩石学报, 2009, 25(8): 1830-1842.

[18] WATSON E B, HARRISON T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth & Planetary Science Letters, 1983, 64(2): 295-304.

[19] LIU Yongsheng, ZONG Keqing, KELEMEN P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247(1): 133-153.

[20] HU Zhaochu, GAO Shan, LIU Yongsheng, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093-1101.

[21] 王成, 孟方, 毛自力. 贺兰山黄旗口花岗岩锆石SHRIMP U-Pb定年和岩石地球化学特征[J]. 宁夏工程技术, 2012, 11(3): 206-213.

[22] 胡能高, 杨家喜. 贺兰山群变质岩的地球化学特征[J]. 矿物学报, 1995, 15(1): 104-110.

[23] SUN Shensu, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[24] BARBARIN B. Genesis of the two main types of peraluminous granitoids[J]. Geology, 1996, 24(4): 295-298.

[25] BARBARIN B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626.

[26] GREEN T H. Experimental generation of cordierite-or garnet-bearing granitic liquids from a pelitic composition[J]. Geology, 1976, 4(2): 85-88.

[27] CHAPPELL B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated hapogranites[J]. Lithos, 1999, 46(3): 535-551.

[28] 校培喜, 由伟丰, 谢从瑞, 等. 贺兰山北段贺兰山岩群富铝片麻岩碎屑锆石 LA-ICP-MS U-Pb 定年及区域对比[J]. 地质通报, 2011, 30(1): 26-36.

[29] DOUCE A E P. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society of London, Special Publications, 1999, 168(1): 55-75.

[30] SYLVESTER P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1): 29-44.

[31] 李江海, 钱祥麟, 刘树文. 华北克拉通中部孔兹岩系的地球化学特征及其大陆克拉通化意义[J]. 中国科学: D 辑, 1999, 29(3): 193-203.

[32] XIA Xiaoping, SUN Min, ZHAO Guochun, et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton[J]. Earth and Planetary Science Letters, 2006, 241(3): 581-593.

[33] LIU Xishan, JIN Wei, LI Shuxun, et al. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China[J]. Journal of Metamorphic Geology, 1993, 11(4): 499-510.

[34] SANTOSH M, WILDE S A, LI Jianghai. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: evidence from SHRIMP U-Pb zircon geochronology[J]. Precambrian Research, 2007, 159(3): 178-196.

[35] GUO Jinghui, PENG Peng, CHEN Yi, et al. UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton[J]. Precambrian Research, 2012, 222: 124-142.

[36] 董春艳, 刘敦一, 李俊建, 等. 华北克拉通西部孔兹岩带形成时代新证据: 巴彦乌拉-贺兰山地区锆石SHRIMP定年和Hf同位素组成[J]. 科学通报, 2007, 52(16): 1913-1922.