中南大学学报(自然科学版)

环境风与列车交会耦合作用下磁浮列车横向气动性能

梁习锋,沈娴雅

 (中南大学 轨道交通安全教育部重点实验室,湖南 长沙,410075)

摘 要:

摘  要:采用三维、可压、非定常N-S方程,用动网格技术实现列车与地面、环境风与列车之间的相对运动,对不同风速、风向环境风作用下,磁浮列车以430 km/h速度等速交会时列车横向气动性能进行数值分析。研究结果表明:当风向角为135?时,磁浮列车受到的交会压力波幅值最大;头车和尾车横向力在风向角分别为270?和225?时最大,分别为-172.5 kN和77.4 kN;头、尾车侧滚力矩均在风向角为90?时最大,分别为-226.7 kN?m和-203.7 kN?m;在90?风向角下,风速增大,列车受到的横向力和侧滚力矩增大,横向力近似与风速的0.8次方成正比,而侧滚力矩约与风速的1.3~1.5次方成正比。

关键词:

磁浮列车交会压力波横向气动性能

中图分类号:U270.11         文献标识码:A         文章编号:1672-7207(2007)04-0751-07

Lateral aerodynamic performances of maglev train when

 two trains meet with wind blowing

LIANG Xi-feng, SHEN Xian-ya

 (Key Laboratory for Traffic Safety on Track

of Ministry of Education, Central South University, Changsha 410075, China)

Abstract: Based on three dimensional and compressional models with unsteady N-S equation, the technology named ‘Dynamic Mesh’ was adopted to carry out two kinds of movements: trains and floor, wind and trains. Numerical analysis was made on lateral aerodynamic performances when two maglev trains met at the constant speed of 430 km/h, and wind with various direction and speed is blew to them. The research results indicate that the amplitude of air crossing pressure pulse the maglev train feels is the biggest in 135? wind direction. When two trains meet at the speed of 430 km/h, aerodynamic forces change with wind direction. The capsizal moments that the head and tail receive, are both the biggest at 90?, i.e., -226.7 kN?m and -203.7 kN?m respectively, but the biggest lateral force of head and tail separately appears, -172.5 and 77.4 kN under 270? and 225?. In 90? wind direction, the lateral force and capsizal moment increase with the increase of wind speed, proportional to the power of wind speed increase, about 0.8 and 1.3-1.5, respectively.

Key words: maglev train; air crossing pressure pulse; aerodynamic performances

                    

高速行驶的列车对列车周围空气产生强烈扰动,当两相对行驶的列车交会时,在交会瞬间,这一扰动将会加剧,引起列车交会一侧表面的空气压力发生突变,产生较大的瞬态压力冲击,对列车车体钢结构、侧窗和车体横向稳定性均会带来不利影响。特别是在交会过程中遭遇较大的环境风时,可使交会压力波幅值增加,列车将承受更大的横向冲击载荷,严重时将危及行车安全。在此,以头、尾端流线型长度为6 m的磁浮列车为研究对象,在线间距为5.1 m情况下,计算了2列车以430 km/h速度在大风环境下等速交会的几种典型工况,分析环境风风向及风速变化对磁浮列车气动性能的影响。

1  控制方程

采用国际上通用的大型流场计算软件Fluent对环境风作用下2列磁浮列车交会时的流场进行数值模拟计算。Fluent采用非结构网格和有限体积法分别对区域和控制方程进行离散,描述列车周围空气流动的控制方程包括连续性方程、动量方程、能量方程、气体状态方程及湍流模型方程[1-2],Fluent提供了多种湍流模型[3],这里选取工程上应用较广的k—ε双方程模型。控制方程具体形式见参考文献[1-2]。

2  计算模型、计算区域、边界条件及计算网格

2.1  计算模型

列车交会时周围空气流动为非定常流动,交会计算需经历大量迭代运算步骤。为缩短计算时间,本次磁浮列车计算模型由头、尾2节车组成,总长为54 m,计算模型见图1。

图1  磁浮列车计算模型

Fig.1  Computing model of maglev train

2.2  计算区域

计算区域长度、宽度各为300 m,高度为50 m,环境风入口距轨道中心线距离为100 m,线间距为5.1 m,如图2所示。初始计算时2列车头部相距80 m。

(单位:m)

图2  数值模拟计算区域

Fig.2  Numerical simulation computing area

2.3  边界条件

采用动网格方法进行数值模拟。对于2列交会列车车身表面,计算时给定运动边界条件:X方向速度分量等于给定的列车运行速度v,Y和Z向速度分量等于0;对流域前、后两端面(即AEHD和BFGC)给定压力出口边界条件[4-6],取静压为零;流域上顶面ABFE和下底面DCGH按光滑壁面处理,给定无滑移边界条件,即(u, v, w)top, bottom=(0, 0, 0)。环境风入口风方向垂直于入口截面ABCD,其值按计算工况给定,出口截面EFGH静压为零。改变列车模型偏角,即可计算风向变化对列车气动性能的影响。

2.4  计算网格

物面为三角形网格,空间采用非结构化四面体网格。为考虑壁面边界层的影响,在靠近车体表面附近对网格进行加密处理,本次计算空间体单元约为120万。图3所示为水平剖面局部网格图。

图3  水平剖面(Z=2 320 mm)网格图

Fig.3  Grid of level section (Z=2 320 mm)

3  风向变化对列车横向气动性能的影响

3.1 计算工况

环境风风向角示意图如图4所示。

图4  环境风风向角示意图

Fig.4  Sketch map of wind direction

讨论环境风风向对列车横向气动性能影响时,假定2列车运行速度均为430 km/h,风速为20.7 m/s(8级风),具体计算工况如表1所示。

表1  变风向角计算工况

Table 1  Computing work with change of wind direction

为了与以上环境风影响因素进行对比,对不考虑环境风作用的磁浮列车以430 km/h等速交会时的情况进行数值模拟[7-8]

3.2  不同风向环境风作用下列车交会压力波分析

以图4中的磁浮列车Ⅱ作为研究对象,测点布置如图5所示。

图5  交会压力波测点布置图

Fig.5  Distribution of measuring pressure points

图6所示是在不考虑环境风情况下,磁浮车Ⅱ交会侧9号测点的交会压力波波形。当交会列车头部通过测压点时,该点压力先增大后减小(简称头波),而尾部通过时,压力变化情况与头车的相反(简称尾波),且幅值较头部通过时有所减小。图7所示为磁浮车Ⅱ交会侧中间位置测压点压力波幅值随高度变化曲线。由图7可知,侧墙下部和上部压力波幅值较小,中部幅值较大。

图6  磁浮车Ⅱ9号测点压力变化曲线

Fig.6  Pressure curve of point 9 of maglev trainⅡ

图7  磁浮车Ⅱ测点压力波幅值与高度的关系

Fig.7  Relationship between pressure amplitude and height of maglev train Ⅱ

在风向角为0?,45?,90?,135?,180?,225?,270?和315?时的环境风作用下,磁浮车Ⅱ的9号测点压力波形如图8所示[9-12]。可以看出,当风向角为0?时,环境风风向与磁浮车Ⅰ运行方向相同,磁浮车Ⅰ与周围空气相对速度减小,因此,磁浮车Ⅱ交会压力波幅值减小;相反,当风向角为180?时,环境风风向与磁浮车Ⅰ运行方向相反,磁浮车Ⅰ与周围空气相对速度增大,磁浮车Ⅱ交会压力波幅值加大;风向角为90?时,环境风从磁浮车Ⅱ一侧垂直吹过2列交会列车,磁浮车Ⅱ交会侧处于背风面。从图9可以看出,磁浮车Ⅰ头部正压较大,而其交会侧负压较小,因此,磁浮车Ⅱ测点测得的头波正压幅值远比负波正压幅值大,磁浮车I尾部通过时情况与头部的相反,即尾波负压幅值大于正波幅值;当风向角为270?时,磁浮车Ⅱ测点压力变化与风向角为90?时相反。风向角为45?,可看成是0?和90? 2个方向环境风的叠加:0?方向的环境风与磁浮车Ⅰ运行方向相同,使交会压力波幅值减小;90?方向环境风作用下,磁浮车Ⅱ测点头波正压幅值和尾波负压幅值增大;总的叠加效果是压力波幅值比无环境风时的压力波幅值略大,且负波幅值较大。风向角为135?,225?和315?时也可依次类推。特别是,当环境风以135?方向吹向交会列车时,分解的2个风速分量中,180?方向的环境风使磁浮车Ⅱ的压力波幅值增大,90?方向环境风作用下磁浮车Ⅱ交会压力波中尾波负压幅值增大,因而,当风向角为135?时,磁浮车Ⅱ感受的交会压力波幅值最大。

风向角/(?): (a) 0; (b) 45; (c) 90; (d) 135; (e) 180; (f) 225; (g) 270; (h) 315

图8  不同风向角环境风作用下压力波形图

Fig.8  Graphs of pressure wave under wind with various directions

图9  α=90?时水平截面压力云图

Fig.9  Pressure contour of level section when α=90?


各个风向角下压力波幅值计算结果见表2。图10所示是根据表2中数据得出的压力波幅值随风向角的变化曲线。从图10也可以看出,当风向角为135?时,压力波幅值最大。

图10  压力波幅值随环境风风向角的变化

Fig.10  Change of amplitude of pressure pulse with wind angle

表2  不同风向角环境风作用下列车交会压力计算结果

Table 2  Computing results of crossing pressures under various wind directions

3.3  不同风向环境风作用下磁浮车气动力分析

列车交会时车体将受到较大的横向载荷[13-17],主要体现在横向力和侧滚力矩上,侧滚力矩作用点取在轨道背风一侧O点(见图1)。磁浮车Ⅱ所受最大横向力和侧滚力矩(指绝对值)计算结果如表3所示。可见,对于横向力,头车在风向角为270?时最大,尾车在225?时最大,分别为-172.5 kN和77.4 kN;对于侧滚力矩:头、尾车均在90?时最大,分别为-226.7 kN?m和 -203.7 kN?m。

表3  不同风向角下列车气动力计算结果

Table 3  Computing results of aerodynamic forces under various wind directions

4  风速变化对列车气动力的影响

4.1  计算工况

由于风向角为90?时,作用于磁浮车Ⅱ的侧滚力矩最大,即对磁浮车的横向稳定性影响最明显,因此,这里分析风速对列车受力的影响时,选取90?风向角。风速变化计算工况如表4所示。

表4  变风速计算工况

Table 4  Computing work with change of wind speed

4.2  计算结果及分析

图11和图12所示为不同风速下列车气动力计算结果。图中公式根据幂函数曲线拟合得到。由图11和图12可见,风速增大,列车横向力和侧滚力矩迅速增大,横向力近似与风速的0.8次方成正比,而侧滚力矩约与风速的1.3~1.5次方成正比。

图11  横向力与风速关系曲线

Fig.11  Relationship between lateral force and wind speed

图12  侧滚力矩与风速关系曲线

Fig.12  Relationship between capsizal moment and wind speed

5 结 论

a. 当环境风风速一定,风向不同时,磁浮车Ⅱ感受到的压力波幅值不同,其中风向角为135?时,磁浮车Ⅱ感受到的交会压力波幅值最大;在无风情况下,2列车以430 km/h速度交会时,磁浮车Ⅱ中部测点压力波幅值为2.848 kPa;8级环境风(风速20.7 m/s)、风向角为135?时,磁浮车Ⅱ中部测点压力波幅值为4.450 kPa。

b. 头车和尾车横向力在风向角分别为270?和225?时最大,分别为-172.5 kN和77.4 kN;头、尾车侧滚力矩均在风向角为90?时最大,分别为-226.7 kN?m和-203.7 kN?m。

c. 在90?风向角下,风速增大,列车受到的横向力和侧滚力矩增大,横向力近似与风速的0.8次方成正比,而侧滚力矩约与风速的1.3~1.5次方成正比。

参考文献:

[1] 朱自强. 应用计算流体力学[M]. 北京: 北京航空航天大学出版社, 1998.
ZHU Zi-qiang. Application computation and hydrodynamics[M]. Beijing: Beihang University Press, 1998.

[2] 徐华舫. 空气动力学基础[M]. 北京: 北京航空航天大学出版社, 1987.
XU Hua-fang. Aerodynamic base[M]. Beijing: Beihang University Press, 1987.

[3] 陈景仁. 湍流模型及有限分析法[M]. 上海: 上海交通大学出版社, 1989.
CHEN Jing-ren. Overfall model and finite element analysis[M]. Shanghai: Shanghai Jiaotong University Press, 1989.

[4] Takanobu O, Kozo F. Numerical investigation of three~dimensional compressible flows induced by a train moving into a tunnel[J]. Computers and Fluids, 1997, 26(6): 565-585.

[5] Baker C J, Humphreys N D. Aerodynamics forces and moments on containers on flat wagons in cross winds from moving model tests[R]. Nottingham: Department of Civil Engineering, Nottingham University, 1991.

[6] Chung M H A. Level set approach for computing solutions to inviscid compressible flow with moving solid boundary using fixed Cartesian grids[J]. International Journal for Numerical Methods in Fluids, 2001, 36(4): 373-389.

[7] Fujii K, Takanobu O. Aerodynamics of high speed trains passing by each other[J]. Computers and Fluids, 1995, 24(8): 897-908.

[8] Hwang J, Yoon T S, Lee D H, et al. Numerical study of unsteady flow field around high speed trains passing by each[J]. JSME International Journal (Series B: Fluids and Thermal Engineering), 2001, 44 (3): 451-464.

[9] Vanden-Broeck J M, Miloh T. Influence of a layer of mud on the train of waves generated by a moving pressure distribution[J]. Journal of Engineering Mathematics, 1996, 30(3): 387-400.

[10] Gawthorpe R G. Aerodynamics in railway engineering-aerodynamics of trains in the open air[J]. Rwy Eng Int, 1978, 3(3): 7-12.

[11] Matsuoka K, Sasoh A, Takayama K. Numerical and experimental investigation of wave dynamic processes in high-speed train/tunnels[J]. Acta Mechanica Sinica, 2002, 18 (3): 209-226.

[12] Auvity B, Bellenoue M A1, Kageyama T. Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry[J]. Experiments in Fluids, 2001, 30(2): 221-228.

[13] Baker C J, Jones J, Lopez-Calleja F, et al. Measurements of the cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7): 547-563.

[14] 王厚雄, 林荣生. 列车的横风倾覆力矩特性[J]. 空气动力学学报, 1983, 4(3): 72-77.
WANG Hou-xiong, LIN Rong-sheng. Characteristic of crosswind capsizal moment of trains[J]. Acta Aerodynamica Sinica, 1983, 4(3): 72-77.

[15] 李人宪, 翟婉明. 磁悬浮列车横风稳定性的数值分析[J]. 交通运输工程学报, 2001, 1(1): 99-101.
LI Ren-xian, ZHAI Wan-ming. Numerical analysis of crosswind stability of magnetically levitated trains[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 99-101.

[16] 梁习锋, 田红旗. 200 km/h动车组交会空气压力波试验[J]. 中南工业大学学报: 自然科学版, 2002, 33(6): 74-77.
LIANG Xi-feng, TIAN Hong-qi. Test research on crossing air pressure pulse of 200 km/h electric multiple unit[J]. Journal of Central South University of Technology: Natural Science, 2002, 33(6): 74-77.

[17] 梁习锋, 陈燕荣. 列车交会空气压力波测量的影响因素[J]. 中南大学学报: 自然科学版, 2004, 35(5): 810-814.
LIANG Xi-feng, CHEN Yan-rong. Influential factors of measuring air pressure pulse produced by passing trains[J]. Journal of Central South University: Science and Technology, 2004, 35(5): 810-814.

                                 

收稿日期:2006-12-16

基金项目:国家“863”计划资助项目(2005AA505101-508)

作者简介:梁习锋(1963-), 男, 湖南长沙人, 教授, 从事列车空气动力学研究

通讯作者:梁习锋, 男, 教授;电话:0731-2656675; E-mail: gszx@mail.csu.edu.cn

[1] 朱自强. 应用计算流体力学[M]. 北京: 北京航空航天大学出版社, 1998.ZHU Zi-qiang. Application computation and hydrodynamics[M]. Beijing: Beihang University Press, 1998.

[2] 徐华舫. 空气动力学基础[M]. 北京: 北京航空航天大学出版社, 1987.XU Hua-fang. Aerodynamic base[M]. Beijing: Beihang University Press, 1987.

[3] 陈景仁. 湍流模型及有限分析法[M]. 上海: 上海交通大学出版社, 1989.CHEN Jing-ren. Overfall model and finite element analysis[M]. Shanghai: Shanghai Jiaotong University Press, 1989.

[4] Takanobu O, Kozo F. Numerical investigation of three~dimensional compressible flows induced by a train moving into a tunnel[J]. Computers and Fluids, 1997, 26(6): 565-585.

[5] Baker C J, Humphreys N D. Aerodynamics forces and moments on containers on flat wagons in cross winds from moving model tests[R]. Nottingham: Department of Civil Engineering, Nottingham University, 1991.

[6] Chung M H A. Level set approach for computing solutions to inviscid compressible flow with moving solid boundary using fixed Cartesian grids[J]. International Journal for Numerical Methods in Fluids, 2001, 36(4): 373-389.

[7] Fujii K, Takanobu O. Aerodynamics of high speed trains passing by each other[J]. Computers and Fluids, 1995, 24(8): 897-908.

[8] Hwang J, Yoon T S, Lee D H, et al. Numerical study of unsteady flow field around high speed trains passing by each[J]. JSME International Journal (Series B: Fluids and Thermal Engineering), 2001, 44 (3): 451-464.

[9] Vanden-Broeck J M, Miloh T. Influence of a layer of mud on the train of waves generated by a moving pressure distribution[J]. Journal of Engineering Mathematics, 1996, 30(3): 387-400.

[10] Gawthorpe R G. Aerodynamics in railway engineering-aerodynamics of trains in the open air[J]. Rwy Eng Int, 1978, 3(3): 7-12.

[11] Matsuoka K, Sasoh A, Takayama K. Numerical and experimental investigation of wave dynamic processes in high-speed train/tunnels[J]. Acta Mechanica Sinica, 2002, 18 (3): 209-226.

[12] Auvity B, Bellenoue M A1, Kageyama T. Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry[J]. Experiments in Fluids, 2001, 30(2): 221-228.

[13] Baker C J, Jones J, Lopez-Calleja F, et al. Measurements of the cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7): 547-563.

[14] 王厚雄, 林荣生. 列车的横风倾覆力矩特性[J]. 空气动力学学报, 1983, 4(3): 72-77.WANG Hou-xiong, LIN Rong-sheng. Characteristic of crosswind capsizal moment of trains[J]. Acta Aerodynamica Sinica, 1983, 4(3): 72-77.

[15] 李人宪, 翟婉明. 磁悬浮列车横风稳定性的数值分析[J]. 交通运输工程学报, 2001, 1(1): 99-101.LI Ren-xian, ZHAI Wan-ming. Numerical analysis of crosswind stability of magnetically levitated trains[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 99-101.

[16] 梁习锋, 田红旗. 200 km/h动车组交会空气压力波试验[J]. 中南工业大学学报: 自然科学版, 2002, 33(6): 74-77.LIANG Xi-feng, TIAN Hong-qi. Test research on crossing air pressure pulse of 200 km/h electric multiple unit[J]. Journal of Central South University of Technology: Natural Science, 2002, 33(6): 74-77.

" target="blank">[17] 梁习锋, 陈燕荣. 列车交会空气压力波测量的影响因素[J]. 中南大学学报: 自然科学版, 2004, 35(5): 810-814.LIANG Xi-feng, CHEN Yan-rong. Influential factors of measuring air pressure pulse produced by passing trains[J]. Journal of Central South University: Science and Technology, 2004, 35(5): 810-814.