中国有色金属学报

DOI:10.19476/j.ysxb.1004.0609.2018.04.21

萃取有机物污染黄铜矿的At. thiooxidans菌浸出

余华龙1,刘晓荣1,申君辉1,池道杰2

(1. 上海应用技术大学 材料科学与工程学院,上海 201418;

2. 东华大学 环境科学与工程学院,上海 201620)

摘 要:

铜萃取有机物对浸矿微生物的危害日益受关注,探讨了Acidithiobacillus thiooxidans(At. thiooxidans)菌在被铜萃取有机物污染的低品位黄铜矿表面的吸附行为及其生物浸出特征。结果表明:由于萃取有机物的吸附增强了矿石表面疏水性与电负性,使At. thiooxidans细胞在受污染低品位黄铜矿表面的吸附率提高19%。然而,高细胞吸附率并不意味着高浸出率。在受污染低品位黄铜矿的生物浸出过程中,细胞生长速度降低9%,铜浸出率降低29%。CLSM以及SEM观察发现,在萃取有机物胁迫下,附着细胞的胞外多聚物(Extracellular polymeric substances, EPS)分泌受到抑制,势必影响生物膜的构建。在矿石被污染的情况下,有机膜覆盖、细胞新陈代谢受抑制、EPS分泌减少,是导致浸出率降低的主要原因。

关键词:

嗜酸氧化硫硫杆菌溶剂萃取细胞吸附胞外多聚物黄铜矿

文章编号:1004-0609(2018)-04-0823-07       中图分类号:TF18       文献标志码:A

在生物浸出-萃取-电积提铜工艺中,萃取完成后,萃余液将返回生物浸出体系循环利用。但萃余液中包含了以夹带、溶解等方式流失的萃取有机物。这些有机物对浸矿细菌的危害越来越受到关注[1-2]。研究者们[3-4]很早就发现LIX类萃取剂以及萃取剂中包含的煤油、正辛烷等成分对浸矿细菌生长具有抑制作用。同时,不同细菌对萃取有机物适应程度不同,如Acidithiobacillus thiooxidans和Acidithiobacillus ferrooxidans菌相对于Sulfobacillus thermosulfidooxidans和Alicyclobacillus spp更容易受到抑制[5-6]。有研究学者指出这种抑制作用是某种化学-生物联合作用机制[7]。近年来有研究表明[8],铜萃取有机物会破坏浸矿细菌的细胞结构,造成细胞形貌缩短,胞内空泡增加,继而降低浸出效率。

目前,针对萃取有机物影响生物浸出过程的大部分研究仅关注有机物对细菌新陈代谢与浸出率的影响。然而,萃余液中流失的有机物进入浸出体系,绝不是单方面抑制细菌的生长代谢和氧化浸出,势必也会与被浸矿物发生作用,且可能先于细菌吸附到矿物表面。在生物浸出过程中,浸矿细菌在矿石表面的吸附是其与矿物深度作用的前提。吸附在矿物表面的细菌分泌胞外聚合物并形成生物膜,介导了细菌与矿物之间的物质和能量传递,对有价金属的浸出发挥重要作用[9-10]。萃取有机物如吸附到矿物表面必定会对细菌吸附及浸出产生影响,而从矿石被污染的角度考察萃取有机物对生物浸出过程的影响至今未见研究报道。为此,本文作者以At. thiooxidans菌为浸矿细菌,探讨低品位黄铜矿被萃取有机物污染后,细菌在矿物表面的吸附行为以及受染矿物的生物浸出特征。

1  实验

1.1  实验原料

本研究中所用的低品位黄铜矿来自于江西德兴铜业集团。高纯度黄铜矿购自于奥地利国家自然博物馆。几种矿物化学成分如表1。

实验用萃取剂为LIX984N,由德国BASF上海分公司提供。稀释剂为260号工业磺化煤油。

实验用嗜酸氧化硫硫杆菌(At. thiooxidans ATCC53993),由德国杜伊斯堡-埃森大学生物膜中心提供。采用Mackintosh medium(MAC)培养基[11]((NH4)2SO4 0.132 g/L,CaCl2·2H2O 0.147 g/L,MgCl2· 6H2O 0.025 g/L,KH2PO4 0.027 g/L),在接种之时于培养基中加入1 g灭菌后的单质硫,调节其pH为2.0。MAC培养基在120 °C下压力蒸汽灭菌20 min。以低品位黄铜矿为能源,在MAC培养基中对At. thiooxidans菌进行多次传代驯化,最后得到适应在10%的矿浆浓度下生长良好的菌种。培养条件为在恒温培养振荡器(上海智城ZHWY-2102型)中,30℃、180 r/min振荡培养。

表1  几种矿物化学元素分析结果

Table 1  Chemical analysis of several copper sulfide ores

1.2  实验方法

1.2.1  溶剂萃取

萃取在自制的电动搅拌槽中进行,萃取有机相由一定浓度的LIX984N和260号工业磺化煤油混合而成。将MAC培养基与等体积萃取有机相搅拌混合10 min,搅拌速度400 r/min,分相完全后,取150 mL萃余液(即受污染的MAC培养基)于锥形瓶中,随后加入矿石,在摇床中恒温震荡2 h,使得萃取有机物吸附到矿物表面,之后过滤并自然晾干48 h,得到浸出实验用的受染矿石样品。

1.2.2  细胞吸附

采用显微计数的方法研究At. thiooxidans细胞在矿石表面的吸附。取90 mL的纯净MAC培养基于250 mL锥形瓶中,接入10 mL的细菌培养液,恒温磁力搅拌10 min后,加入2 g黄铜矿。通过吸附前后溶液中悬浮细胞数的差值得到细菌在矿物表面的吸附量,其吸附率计算公式为

                           (1)

式中:ni和nt别为初始细菌浓度与t时刻取样检测的浓度;re为吸附率。

1.2.3  低品位黄铜矿的生物浸出

将经过驯化的菌种接种到含有10%受染矿样的纯净MAC培养基中,于恒温震荡培养箱中震荡浸出。浸矿初期每隔6 h调节溶剂其pH为2.0,如在2.0以下则不用调节。用(雷磁PHS-3E型)精密pH测量仪测量浸出液pH和氧化还原电位。每隔2 d取样分析过程参数,以同批次菌种浸出未被有机相污染的清洁低品位黄铜矿,每个条件做两组平行试验。

1.3  性能表征

用英国马尔文公司的Zeta-nanosize电位粒径测定分析仪测定ζ电位,以及美国KINO公司的Optical Contact Angle & interface tension meter进行接触角测量;Nicolet 380型智能傅立叶红外光谱仪器(Thermo Fisher Scientific,美国)分析有机物的红外光谱;北京谱析通用公司TAS 990 Super进行铜离子浓度测定;FEI Quanta 200 FEG型的扫描电子显微镜和蔡司LSM 510激光共聚焦显微镜(CLSM)观察矿物以及细胞形貌。

2  结果与讨论

2.1  萃取有机物对矿石表面的污染

萃取剂LIX984N是由体积比1:1的LIX860N和LIX84组成,LIX860N的有效成分为5-壬基水杨醛肟,LIX84的有效成分为2-羟基-5-壬基苯乙酮肟。而260号工业磺化煤油中主要含有C11-C15的饱和烷烃以及少量稠环芳烃、硫醇、环氧烷烃等杂质以及其他极性物质[12-13]。当低品位黄铜矿接触到萃余液中有机物时,两者绝非相安无事,如图1所示,低品位黄铜矿红外图谱发生了明显变化,在1644.9 cm-1处和1250 cm-1处出现了分别属于肟基C=N—和—C=O的伸缩振动峰。在波长2980.4 cm-1和2901.7 cm-1处出现了C—H—的伸缩振动峰,3450 cm-1处出现了OH—的伸缩振动峰。这些峰的出现证明了萃取有机物在矿石表面的污染。

图1  低品位黄铜矿受萃取有机物污染前后的红外光谱

Fig. 1  Infrared spectra of low-grade chalcopyrite ore before and after being contaminated

2.2  细胞在受污染矿石表面的吸附行为

图2所示为在低品位黄铜矿表面受污染前后At. thiooxidans细胞的吸附特征。由图2可见,At. thiooxidans菌细胞在最初5 min内快速吸附到矿物表面,并很快趋于吸附平衡。在被萃取有机物污染的矿石表面,其初期吸附速度更快,平衡吸附率提高约19%,但吸附达到稳定的时间延迟到7 min。SEM观察表明,对比黄铜矿表面被有机物污染前后At. thiooxidans细胞吸附的形貌(分别见图3(a)和图3(b)),发现在受染黄铜矿表面吸附At. thiooxidans细胞更多且更密集。

图2  At. thiooxidans细胞在低品位黄铜矿被污染前后的吸附率

Fig. 2  Adsorption ratio of At. thiooxidans on uncontaminated/ contaminated low-grade chalcopyrite ores

2.3  受污染黄铜矿的生物浸出特征

被萃取有机物污染的低品位黄铜矿,与清洁低品位黄铜矿,在接种等量同批次At. thiooxidans菌液后进行对比浸出,矿浆浓度保持为10%,接种量为6%,细胞初始浓度3.5×107 mL-1

如图4(a)所示,受污染矿石生物浸出时,At. thiooxidans悬浮细胞浓度在初始阶段出现一个明显低谷,应为细胞在有机物污染矿石表面吸附率增高所致,最大悬浮细胞浓度降低9%。最终浸出率降低29%(见图4(d))。在浸出后期,受污染黄铜矿浸出体系中溶液pH更高、氧化还原电位更低(见图4(b)和图4(c)),都说明At. thiooxidans菌的活性降低,浸矿能力下降。

细菌在矿物表面的吸附是浸出的重要条件。然而细胞的吸附又受到许多因素的影响,如细胞与矿物自身的表面性质,温度、pH、矿浆浓度、粒度等环境因素[14-16]。在浸矿初期,细菌在矿物表面的吸附取决于细菌与矿物的疏水性和表面电性[17-18]

图3  At. thiooxidans细胞在黄铜矿表面的吸附形貌

Fig. 3  SEM images of At. thiooxidans on low-grade chalcopyrite ores

萃取有机物的成分复杂,且含有大量的极性基团。而矿物本身在微观层面存在着细小空隙、以及分布不均的表面活性位点[19]。当矿物与萃取有机物发生固-液接触时,矿物表面的活性位点极易与极性基团相吸引,发生吸附作用。使矿物的表面性质发生变化。由图5(a)可知,随着有机相中LIX984N浓度的升高,黄铜矿表面的接触角由本身的35°逐渐增大到63°左右,其表面疏水性改变十分明显。另一方面,矿石受不同浓度LIX984N的有机相污染后,ζ电位整体减小,电负性更低(见图5(b))。这主要是由于LIX984N由亲水的极性基和亲油的非极性基组成的两亲分子。这种两亲分子会优先吸附在矿物表面[20],使其疏水性增强,有机相中其他物质也会吸附在矿物表面,导致接触角变大。而其中的极性官能团为羟基(—OH)、肟基(CN—OH)[21],使其表面负电荷增大。因此,萃取有机物的吸附导致矿物界面疏水性增加,电负性增强,促进了细菌在矿物表面的初级吸附。然而,尽管At. thiooxidans菌细胞在受染矿石表面的吸附速度和吸附量增加(见图2),但生物浸铜率仍然降低(见图4(d))。高细胞吸附率并不意味着高浸出率。

图4  At. thiooxidans菌浸出低品位黄铜矿过程中相关参数随时间的变化

Fig. 4  Changes of some parameters with time during bioleaching of low-grade chalcopyrite by At. thiooxidans

图5  萃取有机物对低品位黄铜矿表面性质的影响

Fig. 5  Effects of extraction organics on surface properties of low-grade chalcopyrite ore

通常,附着在矿石表面的浸矿细菌会代谢分泌出一些特殊的多糖、脂类、蛋白质等产物,它们聚集形成一层胞外聚合物(EPS)。EPS的产生是细胞吸附的重要生化原因,它不仅可以促使细菌的粘附更加紧密,而且成为浸矿反应的主要场所[22],通过络合在其基团上的Fe3+来氧化溶解金属硫化矿,加快浸矿作用[23-24]

在洁净和受污染MAC培养基中接种等量同批次At.thiooxidans菌液,在相同条件下培养至对数期,分别采用核酸染料Syto9与荧光素标记的刀香豆素ConA对细胞及其胞外多聚物进行染色。Syto9可以通过被动运输扩散透过细胞壁,与DNA结合进而染色,而ConA可以对细菌生物膜多糖进行染色表征。利用激光共聚焦显微镜观察萃取有机物对At. thiooxidans菌EPS分泌的影响,结果如图6所示。

图6(a)显示在正常洁净培养基中生长的At. thiooxidans菌完成了良好的增值,且细菌在增殖过程中正常分泌EPS(红色),一些细胞的EPS在生长过程中脱落,呈现出裸露的绿色细胞。而由图6(b)可见,未见At. thiooxidans菌胞外EPS存在,细胞结构不够完整,仅少量保持杆状形态。该结果表明可能萃取有机物对 At. thiooxidans菌的EPS分泌有影响,但还不能排除萃取有机物与ConA发生作用而影响染色结果的可能。萃取有机物影响下At. thiooxidans菌的染色与CLSM形貌观察尚待深入研究。

为进一步考察萃取有机物对 At. thiooxidans菌EPS分泌的影响,通过SEM观察吸附在受有机物污染的黄铜矿表面的At. thiooxidans菌细胞形态(见图7,同批次菌种,接种48 h取样),同样发现在萃取有机物存在的环境中,附着细胞外未见EPS存在,细胞结构不够完整,之前的研究也证明铜萃取有机物会破坏浸矿细菌的细胞结构[8];而正常生长的At. thiooxidans菌胞外明显可见EPS的形成。推测在萃取有机物影响下,At. thiooxidans菌的胞外多聚物分泌受到了抑制。

吸附在受有机物污染矿石表面的At. thiooxidans菌,一方面因萃取有机物的屏蔽会在局部减少了与矿物的深度接触,另一方面因萃取有机物的胁迫,生长活性降低,生长初期EPS的分泌受到阻碍,进而导致了浸出效率的降低。

图6  At. thiooxidans菌胞外的CLSM形貌

Fig. 6  Morphologies of At. thiooxidans cells visualized by CLSM (Con A and Syto 9 staining)

图7  黄铜矿表面At. thiooxidans菌胞外EPS的SEM像

Fig. 7  SEM images of EPS of At. thiooxidans attaching on chalcopyrite ore

3  结论

1) 萃取有机物的吸附增强了低品位黄铜矿表面的疏水性与电负性,使 At. thiooxidans菌的吸附率增加19%。

2) At. thiooxidans菌浸出受萃取有机物污染的低品位黄铜矿时,细胞生长速度降低9%,铜浸出率降低29%。高细胞吸附率并不意味着高浸出率。

3) 在萃取有机物胁迫下,细菌胞外聚合物难以生成,影响生物膜的构建。

4) 矿石表面被有机膜覆盖、细胞新陈代谢受抑制、EPS分泌减少,是导致被萃取有机物污染的低品位黄铜矿浸出率降低的主要原因。

REFERENCES

[1] WATLING H R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review[J]. Hydrometallurgy, 2006, 84: 81-108.

[2] DOPSON M., SUNDKVIST J, E. Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching[J]. Hydrometallurgy, 2006, 81: 205-213.

[3] TORMA A E, ITZKOVITCH I J. Influence of organic solvents on chalcopyrite oxidation ability of Thiobacillus ferrooxidans[J]. Appl Environ Microbiol, 1976, 32: 102-107.

[4] 邱冠周, 刘晓荣, 胡岳华. 萃取有机相对浸矿细菌的影响[J]. 中南工业大学学报(自然科学版), 2001, 32(3): 243-246.

QIU Guan-zhou, LIU Xiao-rong, HU Yue-hua. The effects of organic phases in solvent extraction on bioleaching bacteria[J]. Journal of Central South University Technology (Science and Technology), 2001, 32(3): 243-246.

[5] WATLING H R, PERROT F A, SHIERS D W, GROSHEVA A, RICHARDS T N. Impact of the copper solvent extraction reagent LIX 984N on the growth and activity of selected acidophiles[J]. Hydrometallurgy, 2009, 95: 302-307.

[6] CHEN Bo-wei, LI Wen-juan, LIU Xing-yu, ZHOU Gui-ying, WEN Jian-kang. Influence of copper solvent extractant on microbial community structure of acidophilic microorganisms[J]. Journal of Central South University Technology, 2010, 17(6): 1196-1200.

[7] DAVIS-BELMAR C S, GALLARDO I, DEMERGASSO C, RAUTENBATH G. Effect of organic extractant LIX84IC, pH and temperature changes on bioleaching microorganisms during SX treatment[J]. Hydrometallurgy, 2012, 129/130: 135-139.

[8] LIU Xiao-rong, LI Hui, LIU Yan-jun, SU Chang, SAND W. Impact of entrained and dissolved organic chemicals associated with copper solvent extraction on Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2015, 157: 207-213.

[9] YU Zhao-jing, YU Run-lan, LIU A-juan, LIU Jing, ZENG Wei-min, LIU Xue-duan, QIU Guan-zhou. Effect of pH values on extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans during chalcopyrite bioleaching[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2): 406-412.

[10] 孙 慧, 谷亚冰, 马丽媛, 肖云花, 梁伊丽, 刘学端. 浸矿微生物生物膜的形成与调控研究现状[J]. 湿法冶金, 2015, 34(2): 83-87.

SUN Hui, GU Ya-bing, MA Li-yuan, XIAO Yun-hua, LIANG Yi-li, LIU Xue-duan. Progress on the formation and regulation of biofilm of bioleaching microbial[J]. Hydrometallurgy of China, 2015, 34(2): 83-87.

[11] MACKINTOSH M E. Nitrogen fixation by Thiobacillus ferrooxidans[J]. J Gen Microbiol, 1978, 105: 215-218.

[12] 刘晓荣, 邱冠周, 胡岳华. Lix984N对萃取分相和界面乳化的影响[J]. 矿冶工程, 2003, 23(4): 60-63.

LIU Xiao-rong, QIU Guan-zhou, HU Yue-hua. Effect of Lix984N on phase disengagement and interface emulsification in copper solvent extraction[J]. Mining and Metallurgical Engineering, 2003, 23(4): 60-63.

[13] 刘晓荣, 申君辉, 刘妍君, 朱延号, 张 皓. 羟肟萃取剂LIX984N 酸解和铜萃取分相性能[J]. 中国有色金属学报, 2017, 27(4): 818-824.

LIU Xiao-rong, SHEN Jun-hui, LIU Yan-jun, ZHU Yan-hao, ZHANG Hao. Degradation of oxime extractants LIX984N under impact of acid solution and phase disengagement of copper solvent extraction[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 818-824.

[14] YU Run-lan, LIU Jing, CHEN An. Interaction mechanism of Cu2+, Fe3+ ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 231-236.

[15] 王 军, 李旖旎, 庄 田, 赵红波, 朱 珊, 覃文庆, 邱冠周. 黄铜矿精矿中等嗜热微生物浸出过程及其优化[J]. 中国有色金属学报, 2016, 26(5): 1120-1128.

WANG Jun, LI Yi-ni, ZHUANG Tian, ZHAO Hong-bo, ZHU Shan, QIN Wen-qing, QIU Guan-zhou. Bioleaching of chalcopyrite concentrate with moderate thermophilic bacteria and its optimization[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 1120-1128.

[16] 朱 莉, 张德诚, 罗学刚. 黄铜矿物表面吸附细菌的研究[J]. 化工进展, 2008, 27(8): 1272-1276.

ZHU Li, ZHANG De-cheng, LUO Xue-gang. Adsorption of bacterial on chalcopyrite mineral surface[J]. Chemical Industry and Engineering Progress, 2008, 27(8): 1272-1276.

[17] LU J, DREISINGER D. Solvent extraction of copper from chloride solution I: Extraction isotherms[J]. Hydrometallurgy, 2013, 137: 13-17.

[18] MOZES N, ROUXHET P. Surface properties of microbial cells and their role in adhesion and flocculation[J]. Colloids and Surfaces, 1989, 42: 313-329.

[19] ZHANG Rui-yong, B, LAURA C, THOMAS R. N, WOLFGANG S, MARIO V. Colonization and biofilm formation of the extremely acidophilic archaeon Ferroplasma acidiphilum[J]. Hydrometallurg, 2014, 150: 245-252.

[20] 吴大清, 刁桂仪, 魏俊峰. 矿物表面基团与表面作用[J]. 高校地质学报, 2000, 6(4): 225-231.

WU Da-qing, DIAO Gui-yi, WEI Jun-feng, YUAN Peng. Surface function groups and surface reactions of minerals[J]. Geological Journal of China Universities, 2000, 6(4): 225-231.

[21] PANDA S, PARHI P K, PRADHAN N, MOHAPATRA U B, SUKLA L B, PARK K H. Extraction of copper from bacterial leach liquor of a low grade chalcopyrite test heap using LIX 984N-C[J]. Hydrometallurgy, 2012, 121/124: 116-119.

[22] 余润兰, 刘亚楠, 周 丹, 彭堂见, 刘学端, 顾帼华, 邱冠周, 曾伟民. 生物浸出过程中的藻酸盐作用及其机理的研究进展[J]. 中国有色金属学报, 2015, 25(6): 1687-1693.

YU Run-lan, LIU Ya-nan, ZHOU Dan, PENG Tang-jian, LIU Xuan-duan, GU Guo-hua, QIU Guan-zhou, ZENG Wei-min. Research progress of alginate effects and mechanism during bioleaching[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1687-1693.

[23] YANG Hai-lin, FENG Shou-shuai, XIN Yu. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp[J]. Bioresource Technology, 2014, 154: 185-191.

[24] PENG Tang-jian, SHI Li-juan, YU Run-lan, GU Guo-hua, ZHOU Dan, CHEN Miao, QIU Guan-zhou, ZENG Wei-min. Effects of processing pH stimulation on cooperative bioleaching of chalcopyrite concentrate by free and attached cells[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(10): 2220-2229.

Bioleaching of copper solvent extraction organics contaminated-chalcopyrite ores by Acidithiobacillus thiooxidans

YU Hua-long1, LIU Xiao-rong1, SHEN Jun-hui1, CHI Dao-jie2

(1. School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;

2. School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China)

Abstract: The impacts of copper solvent extraction (SX) organics on bioleaching microorganism are attracting more and more attentions. The attachment of the cells of Acidithiobacillus thiooxidans (At.thiooxidans) on the low grade chalcopyrite ore, contaminated by SX organics, and the subsequent bioleaching process were investigated. The results show that the attachment of the cells to the SX organics contaminated-ores increases by 19% since the surface hydrophobicity and electronegativity of the ores are enhanced by SX organics. However, a higher level of attachment of the cells does not mean the better bioleaching efficiency indeed. For bioleaching of the contaminated low-grade chalcopyrite ores, the metabolic rate of At.thiooxidans and the copper extraction efficiency decreases by 9% and 29%, respectively. Impacted by SX organics, the EPS secretion of At.thiooxidans seems to be inhibited, which retards the construction of the biofilm. Conclusively, being covered surface of the ores, inhibited metabolism and EPS secretion for the cells might be the primary reasons for the low bioleaching efficiency of the SX organics contaminated-ores.

Key words: Acidithiobacillus thiooxidans; copper solvent extraction; bacterial adsorption; extracellular polymeric substances; chalcopyrite

Foundation item: Project(51474150) supported by the National Natural Science Foundation of China

Received date: 2017-02-14; Accepted date: 2017-07-20

Corresponding author: LIU Xiao-rong; Tel: +86-21-60873439; E-mail: xrliu@sit.edu.cn

(编辑  龙怀中)

基金项目:国家自然科学基金资助项目(51474150)

收稿日期:2017-02-14;修订日期:2017-07-20

通信作者: 刘晓荣,教授,博士;电话:021-60873425;E-mail: xrliu@sit.edu.cn

摘  要:铜萃取有机物对浸矿微生物的危害日益受关注,探讨了Acidithiobacillus thiooxidans(At. thiooxidans)菌在被铜萃取有机物污染的低品位黄铜矿表面的吸附行为及其生物浸出特征。结果表明:由于萃取有机物的吸附增强了矿石表面疏水性与电负性,使At. thiooxidans细胞在受污染低品位黄铜矿表面的吸附率提高19%。然而,高细胞吸附率并不意味着高浸出率。在受污染低品位黄铜矿的生物浸出过程中,细胞生长速度降低9%,铜浸出率降低29%。CLSM以及SEM观察发现,在萃取有机物胁迫下,附着细胞的胞外多聚物(Extracellular polymeric substances, EPS)分泌受到抑制,势必影响生物膜的构建。在矿石被污染的情况下,有机膜覆盖、细胞新陈代谢受抑制、EPS分泌减少,是导致浸出率降低的主要原因。

[1] WATLING H R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review[J]. Hydrometallurgy, 2006, 84: 81-108.

[2] DOPSON M., SUNDKVIST J, E. Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching[J]. Hydrometallurgy, 2006, 81: 205-213.

[3] TORMA A E, ITZKOVITCH I J. Influence of organic solvents on chalcopyrite oxidation ability of Thiobacillus ferrooxidans[J]. Appl Environ Microbiol, 1976, 32: 102-107.

[4] 邱冠周, 刘晓荣, 胡岳华. 萃取有机相对浸矿细菌的影响[J]. 中南工业大学学报(自然科学版), 2001, 32(3): 243-246.

QIU Guan-zhou, LIU Xiao-rong, HU Yue-hua. The effects of organic phases in solvent extraction on bioleaching bacteria[J]. Journal of Central South University Technology (Science and Technology), 2001, 32(3): 243-246.

[5] WATLING H R, PERROT F A, SHIERS D W, GROSHEVA A, RICHARDS T N. Impact of the copper solvent extraction reagent LIX 984N on the growth and activity of selected acidophiles[J]. Hydrometallurgy, 2009, 95: 302-307.

[6] CHEN Bo-wei, LI Wen-juan, LIU Xing-yu, ZHOU Gui-ying, WEN Jian-kang. Influence of copper solvent extractant on microbial community structure of acidophilic microorganisms[J]. Journal of Central South University Technology, 2010, 17(6): 1196-1200.

[7] DAVIS-BELMAR C S, GALLARDO I, DEMERGASSO C, RAUTENBATH G. Effect of organic extractant LIX84IC, pH and temperature changes on bioleaching microorganisms during SX treatment[J]. Hydrometallurgy, 2012, 129/130: 135-139.

[8] LIU Xiao-rong, LI Hui, LIU Yan-jun, SU Chang, SAND W. Impact of entrained and dissolved organic chemicals associated with copper solvent extraction on Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2015, 157: 207-213.

[9] YU Zhao-jing, YU Run-lan, LIU A-juan, LIU Jing, ZENG Wei-min, LIU Xue-duan, QIU Guan-zhou. Effect of pH values on extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans during chalcopyrite bioleaching[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2): 406-412.

[10] 孙 慧, 谷亚冰, 马丽媛, 肖云花, 梁伊丽, 刘学端. 浸矿微生物生物膜的形成与调控研究现状[J]. 湿法冶金, 2015, 34(2): 83-87.

SUN Hui, GU Ya-bing, MA Li-yuan, XIAO Yun-hua, LIANG Yi-li, LIU Xue-duan. Progress on the formation and regulation of biofilm of bioleaching microbial[J]. Hydrometallurgy of China, 2015, 34(2): 83-87.

[11] MACKINTOSH M E. Nitrogen fixation by Thiobacillus ferrooxidans[J]. J Gen Microbiol, 1978, 105: 215-218.

[12] 刘晓荣, 邱冠周, 胡岳华. Lix984N对萃取分相和界面乳化的影响[J]. 矿冶工程, 2003, 23(4): 60-63.

LIU Xiao-rong, QIU Guan-zhou, HU Yue-hua. Effect of Lix984N on phase disengagement and interface emulsification in copper solvent extraction[J]. Mining and Metallurgical Engineering, 2003, 23(4): 60-63.

[13] 刘晓荣, 申君辉, 刘妍君, 朱延号, 张 皓. 羟肟萃取剂LIX984N 酸解和铜萃取分相性能[J]. 中国有色金属学报, 2017, 27(4): 818-824.

LIU Xiao-rong, SHEN Jun-hui, LIU Yan-jun, ZHU Yan-hao, ZHANG Hao. Degradation of oxime extractants LIX984N under impact of acid solution and phase disengagement of copper solvent extraction[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 818-824.

[14] YU Run-lan, LIU Jing, CHEN An. Interaction mechanism of Cu2+, Fe3+ ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 231-236.

[15] 王 军, 李旖旎, 庄 田, 赵红波, 朱 珊, 覃文庆, 邱冠周. 黄铜矿精矿中等嗜热微生物浸出过程及其优化[J]. 中国有色金属学报, 2016, 26(5): 1120-1128.

WANG Jun, LI Yi-ni, ZHUANG Tian, ZHAO Hong-bo, ZHU Shan, QIN Wen-qing, QIU Guan-zhou. Bioleaching of chalcopyrite concentrate with moderate thermophilic bacteria and its optimization[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 1120-1128.

[16] 朱 莉, 张德诚, 罗学刚. 黄铜矿物表面吸附细菌的研究[J]. 化工进展, 2008, 27(8): 1272-1276.

ZHU Li, ZHANG De-cheng, LUO Xue-gang. Adsorption of bacterial on chalcopyrite mineral surface[J]. Chemical Industry and Engineering Progress, 2008, 27(8): 1272-1276.

[17] LU J, DREISINGER D. Solvent extraction of copper from chloride solution I: Extraction isotherms[J]. Hydrometallurgy, 2013, 137: 13-17.

[18] MOZES N, ROUXHET P. Surface properties of microbial cells and their role in adhesion and flocculation[J]. Colloids and Surfaces, 1989, 42: 313-329.

[19] ZHANG Rui-yong, B, LAURA C, THOMAS R. N, WOLFGANG S, MARIO V. Colonization and biofilm formation of the extremely acidophilic archaeon Ferroplasma acidiphilum[J]. Hydrometallurg, 2014, 150: 245-252.

[20] 吴大清, 刁桂仪, 魏俊峰. 矿物表面基团与表面作用[J]. 高校地质学报, 2000, 6(4): 225-231.

WU Da-qing, DIAO Gui-yi, WEI Jun-feng, YUAN Peng. Surface function groups and surface reactions of minerals[J]. Geological Journal of China Universities, 2000, 6(4): 225-231.

[21] PANDA S, PARHI P K, PRADHAN N, MOHAPATRA U B, SUKLA L B, PARK K H. Extraction of copper from bacterial leach liquor of a low grade chalcopyrite test heap using LIX 984N-C[J]. Hydrometallurgy, 2012, 121/124: 116-119.

[22] 余润兰, 刘亚楠, 周 丹, 彭堂见, 刘学端, 顾帼华, 邱冠周, 曾伟民. 生物浸出过程中的藻酸盐作用及其机理的研究进展[J]. 中国有色金属学报, 2015, 25(6): 1687-1693.

YU Run-lan, LIU Ya-nan, ZHOU Dan, PENG Tang-jian, LIU Xuan-duan, GU Guo-hua, QIU Guan-zhou, ZENG Wei-min. Research progress of alginate effects and mechanism during bioleaching[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1687-1693.

[23] YANG Hai-lin, FENG Shou-shuai, XIN Yu. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp[J]. Bioresource Technology, 2014, 154: 185-191.

[24] PENG Tang-jian, SHI Li-juan, YU Run-lan, GU Guo-hua, ZHOU Dan, CHEN Miao, QIU Guan-zhou, ZENG Wei-min. Effects of processing pH stimulation on cooperative bioleaching of chalcopyrite concentrate by free and attached cells[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(10): 2220-2229.