中国有色金属学报

DOI: 10.11817/j.ysxb.1004.0609.2020-36452

湖南当家冲铜矿床白石峰岩体地球化学、锆石U-Pb年代学和Hf同位素

宋泽友1,冯雨周2,邵拥军2,李  剑1,刘忠法2,冯玉龙2,谭华杰2,周皓迪1

(1. 湖南省国土资源规划院 国土资源评价与利用湖南省重点实验室,长沙 410007;

2. 中南大学 有色金属成矿预测与地质环境监测教育部重点实验室,长沙410083)

摘 要:

选择钦-杭成矿带中段当家冲铜矿区白石峰岩体为研究对象开展岩相学、地球化学、锆石U-Pb-Hf同位素方面研究。结果显示:白石峰岩体岩性为黑云母二长花岗岩,具有富Si(w(SiO2)为70.95%~72.12%)、富碱(w(Na2O+K2O)为8.48%~8.99%)、弱过铝质(A/CNK为1.07~1.09)特征,成岩温度变化范围较大(锆石Ti温度计为658~816 ℃),指示其I型花岗岩属性。LA-ICP-MS锆石U-Pb定年结果((135.4±0.8) Ma,平均标准权重偏差为1.9, N=14)显示白石峰岩体形成于早白垩纪,与华南地区燕山晚期大规模岩浆活动事件吻合。另外,白石峰岩体中Mg#(35~38)、Co(3×10-6~4×10-6)、Ni(3×10-6~5×10-6)、Sr(111×10-6~131×10-6)和Yb(1.13×10-6~1.36×10-6)的含量较低,具有明显的负Eu异常(δEu=0.33~0.40)和低Nb/Ta比值(6.29~8.07),且Hf同位素显示亏损(εHf(t)= -4.73~-0.58),Hf模式年龄年龄(tDM2)范围为1484~1228 Ma,指示白石峰岩体来源中元古代含石榴石-斜长石岩石部分熔融形成的。结合区域地质资料和前人相关研究成果,推测白石峰花岗岩体形成于太平洋板块由俯冲转为回撤,构造应力由挤压向拉张伸展转换的环境中。

关键词:

白石峰岩体锆石U-Pb年龄地球化学锆石Hf同位素当家冲铜矿钦杭成矿带

文章编号:1004-0609(2020)-08-1942-15       中图分类号:P588.121;P597.3       文献标志码:A

华南地区钦-杭成矿带是由扬子板块与华夏板块于晋宁造山运动时期(970 Ma)拼合而成[1-3]。该成矿带在中晚侏罗世(177~170 Ma)受太平洋板块俯冲作用影响产生了强烈的岩浆活动,形成了大量花岗岩及与之关系密切的W、Sn、Bi、Mo、Cu、Ag和Au矿化[4-5]。晚侏罗世到早白垩世,太平洋板块由俯冲转为回撤,该成矿带即处于伸展拉张的环境中,伴随着形成了NE-NNE向的盆岭构造、断裂构造、广泛的花岗岩及与之关系密切的Cu、Pb、Zn和Au矿化[4-5]。因此,该成矿带上的花岗岩的研究受到了地质学家的广泛关注[6-11]。 20世纪80年代是花岗岩分类研究的鼎盛时期,国内外研究学者从不同方面提出了近20种花岗岩的成因分类方案。例如,CHAPPELL等[12]基于物质来源将花岗岩分为S型和I型;ISHIHARA[13]基于环境条件将花岗岩分为磁铁矿系列和钛铁矿系列;LOISELLAD等[14]提出了A型花岗岩的概念;徐克勤等[9]根据成岩物质来源将花岗岩分为同熔型、陆壳改造型和幔源型3个类型。目前为止,I、S和A型花岗岩是最常用的花岗岩成因分类方案。按照这种分类方案,钦杭成矿带上花岗岩主要有两种类型[9]:一类为与W、Sn、Nb、Ta等稀有金属成矿作用密切相关的S型花岗岩(改造型),如湖南瑶岗仙、柿竹园、江西西华山和漂塘等钨矿矿区内出露的花岗岩;另一类为与Pb、Zn、Cu成矿作用有关的I型花岗岩(同熔型),如湖南水口山、宝山和铜山岭等铅锌多金属矿区内出露的花岗闪长岩、花岗斑岩等。研究表明,这两种类型花岗岩在岩石学、物质来源和构造地质背景方面存在较大差异[8, 15]。 当家冲铜矿是近年来钦杭成矿带新发现的铜矿床,目前尚处于勘查阶段,基础地质研究工作程度低。已有的勘查资料显示,白石峰岩体为矿区内出露的主要花岗岩体,同时也是重要的赋矿围岩。截止目前,针对该岩体尚未开展过系统的研究。本文作者以白石峰岩体为研究对象,开展岩体地质特征、岩相学特征、地球化学特征、锆石U-Pb年代学和Hf同位素研究,从矿物组成、主微量和同位素元素等方面深入探讨其成岩年龄、成因和构造地质背景。

1  成矿地质背景

研究区位于扬子地块与华夏地块之间的缝合带 钦-杭成矿带中段北缘[3]。钦-杭成矿带中生代受到古太平洋板块俯冲的影响,经历了复杂的构造岩浆热液活动,并伴随有大规模的成矿活动,形成了众多的金属矿床[10, 16]。区域上出露的地层主要有新元古代冷家溪群千枚状板岩夹变质砂岩、泥盆系跳马涧组石英砂岩、粉砂质泥岩和泥质砂岩,白垩系神皇山组紫红色砂岩、砂质泥岩和石英砂岩以及第四系冲积物。区域上断裂构造主要发育有NE向长寿-衡阳-观音阁深大断裂及下盘平行的断裂构造及其斜交的次级NW向构造。区域上出露的岩浆岩岩体沿NE向呈串珠状分布,其中规模较大的岩体主要有南岳、白石峰和金溪庙岩体。

2  矿区地质特征

矿区位于长寿-衡阳-观音阁深大断裂中段。区内出露的地层为新元古界冷家溪群第二段,岩性为灰绿色、青灰色厚-巨厚层千枚状板岩、粉砂质绢云母板岩,夹薄层状浅变质粉砂岩。矿区断裂构造发育,以NE向和NNE向断裂构造为主。其中NE向断裂规模大,活动期次多,热液活动发育,为矿区主要的导矿和容矿构造。矿区岩浆活动强烈,区内大面积出露白石峰岩体,出露面积为16.2 km2,岩体受区域断裂构造控制明显,呈NEE向展布,岩性以黑云母二长花岗岩为主。白石峰岩体东侧与南岳中粗粒斑状二长花岗岩体岩体呈侵入接触,倾角25°~80°。岩体南侧及西侧与冷家溪群地层接触(见图1)。 野外观察结合岩相学研究表明,白石峰岩体岩性为黑云母二长花岗岩,呈灰白色,细至中粒结构,块状构造(见图2(a)),岩石矿物成分包括黑云母(4%~ 7%)、钾长石(30%~39%)、斜长石(22%~28%)、石英(25%~30%)、白云母(1%~3%)、磷灰石(<1%)和锆石(<1%)。黑云母呈棕褐色,自形-半自形片状,粒径为0.1~0.6 mm,部分颗粒被长石、石英交代溶蚀(见图2(b)),部分黑云母发生绿泥石化现象。钾长石为无色,呈自形-半自形板状,粒径为0.6~1.4 mm,绢云母化、高岭土化蚀变强烈(见图2(c))。斜长石呈自形-半自形板状,粒径为0.6~1.5 mm,蚀变较弱(见图2(b)和(c))。石英呈无色,半自形-他形粒状,粒径为0.05~0.6 mm,部分石英颗粒有交代溶蚀黑云母、长石的现象(见图2(d))。

图1  当家冲矿区区域地质简图(据戴典文等2019[17])

Fig. 1  Regional geology sketch map of Dangjiachong deposit (after Dai et al, 2019[17])

图2  白石峰黑云母二长花岗岩显微照片

Fig. 2  Micro photographs of Baishifeng biotite adamellite

3  样品采集与测试方法

本次研究所涉及的样品均采自矿区中部钻孔ZK5001:ZK5001-1(61.1 m)、ZK5001-2(61.2 m)、ZK5001-3(61.3 m)、ZK5001-4(72.5 m)、ZK5001-5(72.7 m)。主量、微量(含稀土)元素测试单位为澳实分析检测(广州)有限公司。主量元素分析采用X射线荧光光谱法(XRF)测试,由熔融法制得薄片,精度优于0.5%;FeO含量采用湿化学方法分析,精度优于0.5%。微量元素和稀土元素分析采用电感耦合等离子体质谱仪(ICP-MS)测定,检测限低于0.5×10-9,相对标准偏差小于5%。 用于锆石U-Pb定年和锆石原位Hf同位素研究的样品粉碎后,经磁分选和重液分离出单颗粒锆石,然后在双目镜下手工挑选出颗粒较大,晶形完好的锆石制靶,拍摄反射光、透射光、阴极发光(CL)照相等处理后,对选定的锆石颗粒分别进行LA-ICP-MS锆石U-Pb定年和锆石原位Hf同位素分析。 LA-ICP-MS锆石U-Pb定年在中国冶金地质总局山东局测试中心实验室完成。采用仪器型号为Thermo Xeries 2,配置Coherent公司生产的COMPexPro CO2F Geolas 193 nm ArF准分子激光剥蚀系统,分析过程激光束斑直径为30 μm,频率为8 Hz,能量密度8.5 J/cm2,剥蚀时间110 s,其中前30 s为空白信号,中间55 s为剥蚀时间,后25 s为吹扫残留信号时间。测试数据采用软件ICPMSDataCal进行处理,具体测试方法见文献[3]。 锆石原位微区Hf同位素比值测试在南京聚谱检测科技有限公司完成。Hf同位素测试点的位置与U-Pb同位素定年测试点的位置相同。激光剥蚀系统为GeoLas 2005 (Lambda Physik,德国),多接收器型号电感耦合等离子体质谱仪(MC-ICP-MS)由英国Nu Instruments公司制造,型号为Nu Plasma II。准分子激光发生器产生的深紫外光束经匀化光路聚焦于锆石表面,能量密度为6.0 J/cm2,束斑直径为50 um,频率为8 Hz,共剥蚀40 s,剥蚀气溶胶由氦气送入MC-ICP-MS完成测试。测试过程中每隔10颗样品锆石,交替测试2颗标准锆石(包括GJ-1、91500、Plesovice、Mud Tank、Penglai),以检验锆石Hf同位素比值数据质量。分析数据的离线处理(包括对样品和空白信号的选择、同位素质量分馏校正)同样采用软件ICPMSDataCal完成[18]

4  测试结果

4.1  蚀变影响判断

主量元素地球化学测试结果显示(见表1),白石峰岩体样品的烧失量介于0.39~0.50之间,平均值0.44,总体较低,指示测试样品较为新鲜,受到后期热液作用的影响有限,与岩相学观察一致。为了进一步判断测试数据的有效性,本次研究计算了其Ishikawa蚀变指数(AI=100 (K2O+MgO)/(K2O+MgO+Na2O+CaO)[19]和绿泥石-碳酸盐-黄铁矿蚀变指数(CCPI=100 (FeO+MgO)/(FeO+MgO+K2O+Na2O))[20]。当家冲铜矿区白石峰岩体的AI蚀变指数变化范围为54.64~58.10 (平均值56.34),CCPI蚀变指数变化范围为22.23~ 26.96(平均值24.08)。在蚀变盒子(见图3)中[20],样品均落入“最小蚀变”区域,显示本次研究所采集的样品较为新鲜,可以直接用来进行岩石形成机制的分析。

4.2  岩石地球化学特征

4.2.1  主量元素特征

主量元素分析结果(见表1)显示,白石峰岩体SiO2含量为70.95%~72.12%,平均含量71.76%;Al2O3含量为14.40%~14.90%,平均含量14.58%;MgO含量为0.51%~0.66%,平均含量0.57%,Mg#值(Mg2+/ (Mg2++Fe2+)为35~38,平均值为37。岩石总碱量(Na2O+ K2O)为8.48%~8.99%,平均值8.67%;Na2O/K2O值为0.57~0.68,平均值0.63。K2O-SiO2图解显示岩石属于钾玄岩系列(见图4(a)),A/NK-A/CNK图解显示岩石属弱过铝质花岗岩(见图4(b))。岩体SiO2-(Na2O+K2O)图解中,样品投影点落入碱性花岗岩/花岗岩区域(见图5)。

4.2.2  微量元素特征

表1  当家冲铜矿区白石峰岩体主量元素分析结果

Table 1  Major elements analyses on Baishifeng stock in Dangjiachong deposit

图3  白石峰岩体蚀变盒子投图(据LARGE et al, 2001[20])

Fig. 3  Alteration box plot showing Baishifeng stock (by LARGE et al, 2001[20])

图4  白石峰岩体SiO2-K2O(据PECCERILLO et al, 1971[21])及A/CNK-A/NK图解(据MANIAR et al, 1989[22])

Fig. 4  Plots of K2O-SiO2 (by PECCERILLO et al, 1971[21]) (a) and A/NK-A/CNK (by MANIAR et al, 1989[22]) (b) of Baishifeng stock

图5  白石峰岩体SiO2-(Na2O+K2O)图解(据IRVINE et al, 1971[23])

Fig. 5  Plots of SiO2-(Na2O+K2O) (by IRVINE et al, 1971[23]) of Baishifeng stock

稀土元素分析结果(见表2)显示,白石峰岩体的稀土元素总量(REE)介于197.00×10-6~228.96×10-6之间,平均值210.43×10-6。轻稀土总量(LREE)介于182.20×10-6~213.78×10-6,平均值195.33×10-6;重稀土总量(HREE)介于13.94×10-6~16.19×10-6,平均值15.10×10-6;轻重稀土比值(LREE/HREE)为12.06~ 14.08,平均值12.95。Eu异常值(δEu)为0.33~0.40,平均值0.37。稀土元素球粒陨石配分曲线总体呈“海鸥型”,但表现出向右弱倾斜的趋势,表明轻稀土较重稀土更为富集。轻重稀土相比,轻稀土之间分馏明显,重稀土之间分馏相对不明显(见图6(a))。在原始地幔标准化微量元素蛛网图(见图6(b))上,所有样品标准化蛛网图图型大致相似,均表现出相对富集大离子亲石元素Rb、K及高场强元素Th、U、Hf;相对亏损大离子亲石元素Ba、P及高场强元素Nb、Sr和Ti。白石峰岩体具有较低的Cr(20×10-6~ 30×10-6)、Co(3×10-6~4×10-6)和Ni(3×10-6~5×10-6)含量。

表2  白石峰岩体稀土及微量元素含量及其相关参数

Table 2  Contents of rare earth elements and other trace elements and relevant parameters for Baishifeng stock

图6  白石峰岩体稀土元素球粒陨石标准化配分图与微量元素原始地幔标准化蛛网图(原始地幔标准值据SUN et al, 1989[24])

Fig. 6  Chondrite-normalized REEs (a) and PM-normalized trace elements patterns (normalization values by SUN et al, 1989[24]) (b) for Baishifeng stock

4.3  锆石U-Pb年龄

锆石U-Pb数据分析结果(见表3)及锆石阴极发光CL图像(见图7(a))显示,锆石自形程度较好,主要呈短柱状,颗粒长95~155 μm,宽45~80 μm,长宽比约为1.25~3.33,锆石颗粒均具有清晰的震荡环带,环带发育较为密集,宽度较窄,Th/U比值介于0.20~1.50,平均值为0.68,呈现岩浆锆石特征[25-26]。 锆石微量元素分析结果显示(见表4),锆石REE总量介于133.07×10-6~933.40×10-6之间,平均值586.88×10-6;LREE总量介于5.85×10-6~69.49× 10-6,平均值26.57×10-6;HREE总量介于126.29× 10-6~869.72×10-6,平均值560.32×10-6;LREE/HREE值介于0.03~0.08之间,属于强烈富集重稀土而轻稀土亏损型,这与(Ce/Yb)N=0.007~0.026一致。δEu值介于0.25~0.68之间,铕负异常明显;δCe值变化范围为6.55~416.07,具明显的Ce正异常。白石峰岩体锆石稀土元素组成特征与岩浆锆石稀土元素组成特征一致(见图7(b))[27]。 本次LA-ICP-MS锆石U-Pb年代学测试获得14个有效数据,其206Pb/238U年龄变化范围位于129~142 Ma之间,计算获得206Pb/238U谐和年龄为135.4±0.8 Ma(平均标准权重偏差MSWD=1.9,N=14;图8(a)),加权平均年龄为136.3±2.7 Ma(MSWD=2.8,N=14;图8(b)),两个年龄在误差范围内一致,可以代表白石峰岩体形成年龄。

4.4  锆石Hf同位素组成

锆石Hf同位素分析结果显示(见表5),锆石176Lu/177Hf比值为0.000449~0.001333,平均值为0.000988,均小于0.002,表明锆石在形成以后具有很少放射性成因Hf的积累,因此,测试获得的176Lu/177Hf比值可以代表锆石结晶时的176Lu/77Hf比值[28]。依据白石峰岩体侵位年龄(t=135 Ma)计算获得锆石176Hf/177Hf比值范围为0.282556~0.282671,平均值为0.282625;εHf(t)值介于-4.73~-0.58之间,平均值为-2.31;二阶段Hf模式年龄年龄(tDM2)范围为1484~ 1228 Ma,平均值为1332 Ma。

图7  白石峰岩体锆石CL图和锆石稀土元素球粒陨石配分模式图

Fig. 7  CL images (a) and Chondrite-normalized REE patterns (b) of zircons from Baishifeng stock

图8  白石峰岩体锆石U-Pb年龄谐和图和加权平均年龄

Fig. 8  207Pb/235U-206Pb/238U Concordia diagrams (a) and weighted mean 206Pb/238U ages (b) of zircon U-Pb ages from Baishifeng stock

表3  白石峰岩体LA-ICP-MS锆石U-Pb同位素分析结果

Table 3  LA-ICP-MS analyses of zircon U-Pb isotopes of Baishifeng stock

表4  白石峰岩体锆石微量元素分析结果

Table 4  Zircon trace elements analyses on Baishifeng stock

表5  白石峰岩体锆石Hf同位素分析结果

Table 5  Zircon Hf isotopic analyses on Baishifeng stock

5  分析与讨论

5.1  岩浆岩成因

研究表明,根据源区和化学成分的不同,花岗岩成因类型可划分为I、S和A型。I型花岗岩是偏基性的下地壳硅镁层岩石(火山岩)部分熔融的产物[29-31];S型花岗岩以沉积岩或变质沉积岩等壳层沉积物为主,主要为上地壳硅铝层(沉积岩)的部分熔融[28];A型花岗岩不强调其物质来源,而更强调其化学成分[32-33]。A型花岗岩的传统定义为无水、碱性和非造山的[14],通常情况下,碱性暗色矿物如钠闪石-钠铁闪石、霓石-霓辉石、铁橄榄石等为厘定A型花岗岩的重要矿物学标志[28, 34]。A型花岗岩地球化学成分上具有较高的Zr、Nb、Ce和Y(Zr+Nb+Ce+Y>350×10-6),10000Ga/Al>2.6[32-33],形成于高温环境中(>830 ℃)[35]。本次研究发现,白石峰岩体中未发育明显的碱性暗色矿物,且Zr(122×10-6~152×10-6)、Nb (12.1×10-6~14.4×10-6)、Ce(87.6×10-6~104.0× 10-6)和Y(16.8×10-6~20.3×10-6)含量较低,10000Ga/ Al=2.2~2.5,利用WATSON等[36]锆石Ti温度计计算得出白石峰岩体形成温度为658~816 ℃,低于A型花岗岩形成温度,与A型花岗岩特征不符。S型花岗岩通常以含堇青石矿物为特征,为过铝质岩石,含铝指数A/CNK>1.1。白石峰岩体虽含少量白云母,但缺少堇青石,其含铝指数为1.07~1.09,不符合S型花岗岩的典型特征,可能为I型花岗岩。Th随岩浆结晶分异演化的趋势也是区分S型和I型花岗岩的有效证据[37]。如图9所示,白石峰岩体样品沿“I型花岗岩”趋势线分布,指示白石峰岩体为I型花岗岩。

图9  白石峰岩体Rb-Th相关图

Fig. 9  Rb-Th diagram of Baishifeng stock

前人研究表明,原始地幔和地壳中Nb/Ta比值分别为17.5和12~13[12, 24],且地幔来源的岩浆岩中Mg#、Co和Ni含量一般很高[38]。白石峰岩体Nb/Ta比值变化范围为6.29~8.07,具有较低的Mg#(35×10-6~ 38×10-6)、Co(3×10-6~4×10-6)和Ni(3×10-6~5×10-6)含量,指示其岩浆岩源区为地壳。此外,锆石原位Hf 同位素组成也常作为岩浆源区示踪的重要手段[39-40],本次研究得出白石峰岩体锆石原位εHf(t)值为-4.73~-0.58,平均值为-2.31,二阶段Hf模式年龄年龄(tDM2)范围为1484~1228 Ma,平均值为1332 Ma;在锆石εHf(t)值与年龄(Ma)关系图解上,锆石测点均位于下地壳范围(见图10),说明该区黑云母二长花岗岩的岩浆源区主要来自下地壳物质的部分熔融,可能来源于中元古代变质基底的部分熔融。 花岗岩的Sr、Y和Yb是非常有意义的地球化学指标,可以很好地指示岩浆岩源区残留相特征。花岗岩体的Sr含量主要受残留相中斜长石的控制,Y和Yb含量主要受残留相中石榴石和角闪石的控制[42]。另外,Y和Yb尽管地球化学性质相近,但也有一些差别,Y在HREE部分处于Ho和Er之间,接近MREE的位置,更能反映角闪石残留的信息,而Yb在HREE的靠近末端,是HREE的典型代表,更能反映石榴石残留的信息[43-44]。白石峰岩体具有极低的Yb(1.13×10-6~1.36×10-6),且样品HREE呈右倾分布(见图6),HoN大于YbN(MREE富集),指示岩浆源区可能存在石榴石,无角闪石。白石峰岩体贫Sr(111×10-6~131×10-6),有比较明显的负Eu异常(δEu=0.33~0.40),说明残留相中可能有斜长石存在。因此,我们推测白石峰岩体可能是含斜长石-石榴石的基底岩石在较高的压力下部分熔融形成的。

5.2  成岩动力学背景

研究表明,华南地区中生代岩浆活动与太平洋板块俯冲作用密切相关[45-46]。进入到白垩纪(135~80 Ma),古太平洋板块停止向大陆之下俯冲,代之向NNE方向走滑,受此影响,华南地区区域地质背景和应变方式均发生了根本性变化,由挤压环境转换为区域性拉张环境。在拉张环境下,压力的降低非常有利于岩石的部分熔融,同时地壳的拉张减薄还可伴随深部软流圈地幔的上涌和幔源岩浆的底侵作用,从而使地壳加热而进一步发生部分熔融,伴随着形成广泛的花岗岩[47-49]。 花岗岩地球化学特征既可以反映其源区的性质,同时也可以提供构造环境方面的信息[46]。在PEARCE等(1984)[50]提出的微量元素构造环境判别图解中,白石峰岩体样品点落入同碰撞花岗岩区与火山弧花岗岩分界线附近的同碰撞花岗岩一侧,表明白石峰岩体形成于挤压造山向非造山转化过渡的伸展环境。结合华南地区成岩动力学背景,推测白石峰岩体形成于古太平洋板块由俯冲转换为向NNE走滑,构造应力发生改变,由挤压向伸展转换的环境中。

图10  白石峰岩体锆石年龄(ages)-εHf(t)关系图解(据YANG et al, 2006[41])

Fig. 10  Zircon ages vs. εHf(t) of Baishifeng stock (by YANG et al, 2006[41])

图11  白石峰岩体微量元素构造环境判别图解

Fig. 11   Discrimination diagrams for Baishifeng granitic rocks

6  结论

1) 白石峰岩体岩性为黑云母二长花岗岩,具有富Si、富碱、弱过铝质的特征,属于I型花岗岩。另外,白石峰岩体的Mg#、Co、Ni、Sr和Yb含量较低,具有明显的负Eu异常、低Nb/Ta比值,且Hf同位素显示亏损,Hf模式年龄年龄(tDM2)范围为1484~1228 Ma,指示白石峰岩体来源中元古代含石榴石-斜长石岩石部分熔融形成的。 2) 白石峰岩体黑云母二长花岗岩 LA-ICP-MS 锆石U-Pb年龄为135.4±0.8 Ma(MSWD=1.9,N=14),表明其形成于早白垩世。 3) 白石峰岩体属于古太平洋俯冲后陆内伸展的产物,形成于由挤压向拉张伸展转换的构造环境中。

致谢

野外工作得到了湖南省核工业地质局306大队大力支持,岩石地球化学、锆石U-Pb定年及Hf同位素分析工作分别得到了澳实分析检测有限公司、中国冶金地质总局山东局测试中心实验室和南京聚谱科技检测有限公司相关技术人员的帮助,张宇博士为论文的完善提出了宝贵的意见,硕士生程路平、葛超等参与了部分研究工作,谨此致谢。

REFERENCES

[1] LI Xian-hua, MCCULLOCH MALCOLM T. Secular variation in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of the Yangtze Block: evidence for a Proterozoic continental collision in southeast China[J]. Precambrian Research, 1996, 76(1/2): 67-76.

[2] MAO Jing-wen, CHENG Yan-bo, CHEN Mao-hong, PIRAJNO FRANCO. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3): 267-294.

[3] ZHANG Yu, SHAO Yong-jun, LIU Qing-quan, CHEN Hua-yong, QUAN Wei, SUN Ai-xiang. Jurassic magmatism and metallogeny in the eastern Qin-Hang Metallogenic Belt, SE China: An example from the Yongping Cu deposit[J]. Journal of Geochemical Exploration, 2018, 186: 281-297.

[4] LI Zheng-Xiang, LI Xian-Hua. Formation of the 1300 km wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.

[5] ZHU Kong-yang, LI Zheng-xiang, XU Xi-sheng, SIMON A. WILDE. A Mesozoic Andean-type orogenic cycle in South China as recorded by granitoid evolution[J]. American Journal of Science, 2014, 314: 187-234.

[6] 华仁民, 毛景文. 试论中国东部中生代成矿大爆发[J]. 矿床地质, 1999, 18(4): 300-308.

HUA Ren-min, MAO Jing-wen. A preliminary discussion on the Mesozoic metallogenic explosion in East China [J]. Mineral Deposits, 1999, 18(4): 300–308.

[7] 莫柱荪, 叶伯丹, 潘维祖. 南岭花岗岩地质学[M]. 北京:地质出版社, 1980.

MO Zhu-sun, YE Bo-dan, PAN Wei-zu. Geology of Nanling Granites [M]. Beijing: Geological Publishing House, 1980.

[8] 徐克勤, 胡受奚, 孙明志, 叶 俊. 华南两个成因系列花岗岩类及其成矿特征[J]. 矿床地质, 1982(2): 1-14.

XU Ke-qin, HU Shou-xi, SUN Ming-zhi, YE Jun. On the two genetic series of granites in South Eastern China and their metallogenetic characteristics[J]. Mineral Deposits, 1982(2): 1-14.

[9] 徐克勤, 胡受奚, 孙明志, 张景荣, 叶 俊. 论花岗岩的成因系列—— 以华南中生代花岗岩为例[J]. 地质学报, 1983(2): 97-106.

XU Ke-qin, HU Shou-xi, SUN Ming-zhi, ZHANG Jing-rong, YE Jun. On the genetic series of granites, as exemplified by the Mesozoic granites of South China[J]. Acta Geol Sinica, 1983(2): 97-106.

[10] 毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2004, 11(1): 45-55.

MAO Jing-wen, XIE Gui-qing, LI Xiao-feng, ZHANG Chang-qing, MEI Yan-xiong. Mesozoic large scale mineralization and multiple lithospheric extension in South China[J]. Earth Science Frontiers, 2004, 11(1): 45-55.

[11] 周新民. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M]. 北京: 科学出版社, 2007: 179-195.

ZHOU Xin-min. Geneisis of granite and lithospheric dynamics evolution of late Mesozoic in Nanling[M]. Beijing: Science Press, 2007: 179-195.

[12] CHAPPELL B W. Two contrasting granite type[J]. Pacific Geology, 1974, 8: 173-174.

[13] ISHIHARA S. The magnetite-series and ilmenite-series granitic rocks[J]. Min Geol, 1977, 27: 293-305.

[14] LOISELLE M C, WONES D R. Characteristics and origin of anorogenic granites[J]. Geol Soc Am Abs Prog, 1979, 11(7): 468.

[15] 李洪昌, 唐先礼. 南岭地区地洼期酸性、中酸性小岩体特征及其与铅锌矿的关系[J]. 大地构造与成矿学, 1987, 11(3): 259-264.

LI Hong-chang, TANG Xian-li. Characteristics of the small acid and intermfdiate-acid intrusive bodies in Diwa stage of Nanling region and their relation to lead-zinc deposits [J]. Geotecton Metallogen, 1987, 11(3): 259-264.

[16] 毛景文, 谢桂青, 郭春丽, 陈毓川. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10): 2329-2338.

MAO Jing-wen, XIE Gui-qing, GUO Chun-li CHEN Yu-chuan. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 2007, 23(10): 2329-2338.

[17] 戴典文, 王宾海, 王 卡, 王诗潮, 王慧媛. 湖南省衡阳县当家冲矿区铜矿普查报告[R]. 长沙: 湖南省核工业地质局306大队. 2019-07-22.

DAI Dian-wen, WANG Bin-hai, WANG Ka, WANG Shi-chao, WANG Hui-yuan. Reconnaissance design document on the Dangjiachong Copper Deposit, Hengyang, Hunan Province[R]. Changsha: 306 Brigade of Hunan Nuclear Geology. 2019-07-22.

[18] LIU Yong-sheng, HU Zhao-chu, ZONG Ke-qing, GAO Chang-gui, GAO Shan, XU Juan, CHEN Hai-hong. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.

[19] ISHIKAWA Y, SAWAGUCHI T, IWAYA S, HORIUCHIHI M. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos [J]. Mining Geology, 1976, 26: 105-117.

[20] LARGE R R, GEMMELL J B, PAULICK H, HUSTON D. The alteration box plot: A simple approach to understanding the relationships between alteration mineralogy and lithogeochemistry associated with volcanic hosted massive sulfide deposits[J]. Economic Geology, 2001, 96: 957-971.

[21] PECCERILLO A, TAYLOR A R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

[22] MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geological Society of American Bulletin, 1989, 101(5): 635-643.

[23] IRVINE T H, BARAGAR W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548.

[24] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345.

[25] HOSKIN, P.W.O, SCHALTEGGER, U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews of Mineralogy and Geochemistry, 2003, 53: 27-62.

[26] 陈岳龙, 罗照华, 赵俊香, 李志红, 张宏飞, 宋 彪. 从锆石SHRIMP年龄及岩石地球化学特征论四川冕宁康定杂岩的成因[J]. 中国科学(D辑: 地球科学), 2004, 34(8): 687-697.

CHEN Yue-long, LUO Zhao-hua, ZHAO Jun-xiang, LI Zhi-hong, ZHANG Hong-fei, SONG Biao. Genesis of Diamictite in Kangding Area, Minning, Sichuan Province from studies of zircon SHRIMP dating and geochemical characteristics[J]. Science China: Earth Series D, 2004, 34(8): 687-697.

[27] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-286.

ZHAO Zhen-hua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers, 2010, 17(1): 267-286.

[28] 吴福元, 李献华, 杨进辉, 郑永飞. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238.

WU Fu-yuan, LI Xian-hua, YANG Jin-hui, ZHENG Yong-fei. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1218.

[29] RUBATTO D, GEBAUER D. Use of cathodoluminescence for U-Pb zircon dating by IOM microprobe: Some examples from the western[C]// Cathodoluminescence in Geoscience. Heidelberg, Germany: Springer-Verlag, 2000: 373-400.

[30] GRIFFIN W L, PEARSON N J, BELOUSOVA A E. The Hf isotope composition of cratonic mantle: LA-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

[31] CHAPPELL B W, WHITE A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2): 1-26.

[32] COLLINS W J, BEAMS S D, WHITE A J R, CHAPPELL B W. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 1982, 80(2): 189-200.

[33] WHALLEN J B, CURRIE K L, CHAPPELL B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4): 407-419.

[34] 贾小辉, 王 强, 唐功建. A型花岗岩的研究进展及意 义[J]. 大地构造与成矿学, 2009, 33(3): 465-480.

JIA Xiao-hui, WANG Qiang, TANG Gong-jian. A-type Granites: Research Progress and Implications[J]. Geotectonica et Metallogenia, 2009, 33(3): 465-480.

[35] PATINO DOUCE A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25: 743-746.

[36] WATSON E B, WARK D A, THOMAS J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151: 413-433.

[37] CHAPPELL B W. Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46: 535-551.

[38] RAPP R P, SHIMIZU N, NORMAN M D, APPLEGATE G S. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chem Geol, 1999, 160: 335-356.

[39] BARTH M G, MCDONOUGH W F, RUDNICK R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213.

[40] WOODHEAD J D, HERGT J M, DABIDSON J P, EGGINS S M. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes[J]. Earth & Planetary Science Letters, 2001, 192(3): 331-346.

[41] YANG J H, WU F Y, SHAO A W, XIE L W, LIU X M. Constraints on the timing of uplift of the Yanshan Fold and Trust Belt, North China[J]. Earth Planet Sci Lett, 2006, 246: 1096-1116.

[42] NABELEK P I, BARTLETT C D. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks[J]. Lithos, 1998, 45: 71-85.

[43] 吴福元, 李献华, 郑永飞, 高 山. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.

WU Fu-yuan, LI Xian-hua, ZHENG Yong-fei GAO S. Lu-Hf isotopic systematic and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220.

[44] 张 旗, 王 焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269.

ZHANG Qi, WANG Yan, LI Cheng-dong, WANG Yuan-long, JIN Wei-jun, JIA Xiu-qin. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(9): 2249-2269.

[45] 李献华, 李寄嵎, 刘 颖, 陈多福, 王一先, 赵振华. 华夏古陆古元古代变质火山岩的地球化学特征及其构造意 义[J]. 岩石学报, 1999, 15(3): 364-371.

LI Xian-hua, LI Ji-yu, LIU Ying, CHEN Duo-fu, WANG Yi-xian, ZHAO Zhen-hua. Geochemistry characteristics of the Paleoproterozoic meta-volcanics in the Cathaysia block and its tectonic significance[J]. Acta Petrologica Sinica, 1999, 15(3): 364-371.

[46] KEMP A I, HAWKESWORTH C J, FOSTER G L PATERSON B A, WOODHEAD J D, HERGT J M. Magmatic and crustal differentiation history of granitic rocks from Hf-O Isotopes in zircon[J]. Science, 2007, 315(5814): 980.

[47] COLLINS W J. Upper- and middle-crustal response to delamination: An example from the Lachlan fold belt, eastern Australia[J]. Geology, 1994, 22: 143-146.

[48] COSTA S, REY P. Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan metamorphic core complex[J]. Geology, 1995, 23: 905-908.

[49] BONIN B, AZZOUNI-SEKKAL A, BUSSY F, FERRAG S. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings[J]. Lithos, 1998, 45: 45-70.

[50] PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrology, 1984, 25: 956-983.

Geochemistry, zircon U-Pb geochronogy and Hf isotopes of Baishifeng pluton in Dangjiachong Cu deposit, Hunan

SONG Ze-you1, FENG Yu-zhou2, SHAO Yong-jun2, LI Jian1, LIU Zhong-fa2, FENG Yu-long2, TAN Hua-jie2, ZHOU Hao-di1

(1. Hunan Key Laboratory of Land Resources Evaluation and Utlization, Hunan Land and Resources Planning Institute, Changsha 410007, China;

2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitor,  Ministry of Education, Central South University, Changsha 410083, China)

Abstract: Mesozoic tectonic-magmatism events with a wide range of magma and a large numbers of deposits strongly occur in the Qin-Hang metallogenic belt (QHMB) within the South China, which is significant for further insight into the geological evolvement in the South China Plate. The whole rock geochemical data, zircon U, Pb and Hf isotopes of Baishifeng stock in the Dangjiachong Cu deposit were determined, within the middle part of the QHMB. The lithology of the Baishifeng granitic samples are biotite adamellite, enriched in Si (w(SiO2)=70.95%-72.12%), alkali (w(Na2O+K2O)=8.48%-8.99%), weakly peraluminous (A/CNK=1.07-1.09) and have zircon saturation temperature ranging from 658 ℃ to 816 ℃, which are identical with the features of the I-type granite. LA-ICP-MS zircon dating of Baishifeng granite samples yield an age of (135.4±0.8) Ma (MSWD=1.9, N=14), i.e., Early Cretaceous. The lower Mg# values (35-38), Co (3×10-6-4×10-6), Ni (3×10-6-5×10-6), Sr (111×10-6-131×10-6) and Yb (1.13×10-6- 1.36×10-6) contents, the weakly negative Eu anomalies (δEu=0.33-0.40), lower Nb/Ta ratios (6.29-8.07), depletion of Hf isotopes (εHf(t)=-4.73- -0.58) and Hf model ages of 1484-1228 Ma indicate that the Baishifeng granitic body is derived from partial melting of the Mesoproterozoic rocks containing garnets and plagioclase. In conjunction with previous and our studies, the Baishifeng granitic body is formed under a transition environment from squash to stretch, which is associated with transition from subduction to rollback of the Pacific Ocean.

Key words: Baishifeng stock; Zircon U-Pb age; geochemistry; zircon Hf isotope; Dangjiachong deposit; QHMB

Foundation item: Project(20150332) supported by Mineralization Exploration Program of Money Paid for the Mineral Right of Hunan Province, China

Received date: 2019-10-08; Accepted date: 2020-04-03

Corresponding author: SHAO Yong-jun; Tel: 13973149482;E-mail:fengyuzhoucsu@163.com

(编辑  李艳红)

基金项目:湖南省省级矿业权价款地质勘查项目(20150332)

收稿日期:2019-10-08;修订日期:2020-04-03

通信作者:邵拥军,教授,博士;电话:13973149482;E-mail:fengyuzhoucsu@163.com

摘  要:选择钦-杭成矿带中段当家冲铜矿区白石峰岩体为研究对象开展岩相学、地球化学、锆石U-Pb-Hf同位素方面研究。结果显示:白石峰岩体岩性为黑云母二长花岗岩,具有富Si(w(SiO2)为70.95%~72.12%)、富碱(w(Na2O+K2O)为8.48%~8.99%)、弱过铝质(A/CNK为1.07~1.09)特征,成岩温度变化范围较大(锆石Ti温度计为658~816 ℃),指示其I型花岗岩属性。LA-ICP-MS锆石U-Pb定年结果((135.4±0.8) Ma,平均标准权重偏差为1.9, N=14)显示白石峰岩体形成于早白垩纪,与华南地区燕山晚期大规模岩浆活动事件吻合。另外,白石峰岩体中Mg#(35~38)、Co(3×10-6~4×10-6)、Ni(3×10-6~5×10-6)、Sr(111×10-6~131×10-6)和Yb(1.13×10-6~1.36×10-6)的含量较低,具有明显的负Eu异常(δEu=0.33~0.40)和低Nb/Ta比值(6.29~8.07),且Hf同位素显示亏损(εHf(t)= -4.73~-0.58),Hf模式年龄年龄(tDM2)范围为1484~1228 Ma,指示白石峰岩体来源中元古代含石榴石-斜长石岩石部分熔融形成的。结合区域地质资料和前人相关研究成果,推测白石峰花岗岩体形成于太平洋板块由俯冲转为回撤,构造应力由挤压向拉张伸展转换的环境中。

[1] LI Xian-hua, MCCULLOCH MALCOLM T. Secular variation in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of the Yangtze Block: evidence for a Proterozoic continental collision in southeast China[J]. Precambrian Research, 1996, 76(1/2): 67-76.

[2] MAO Jing-wen, CHENG Yan-bo, CHEN Mao-hong, PIRAJNO FRANCO. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3): 267-294.

[3] ZHANG Yu, SHAO Yong-jun, LIU Qing-quan, CHEN Hua-yong, QUAN Wei, SUN Ai-xiang. Jurassic magmatism and metallogeny in the eastern Qin-Hang Metallogenic Belt, SE China: An example from the Yongping Cu deposit[J]. Journal of Geochemical Exploration, 2018, 186: 281-297.

[4] LI Zheng-Xiang, LI Xian-Hua. Formation of the 1300 km wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.

[5] ZHU Kong-yang, LI Zheng-xiang, XU Xi-sheng, SIMON A. WILDE. A Mesozoic Andean-type orogenic cycle in South China as recorded by granitoid evolution[J]. American Journal of Science, 2014, 314: 187-234.

[6] 华仁民, 毛景文. 试论中国东部中生代成矿大爆发[J]. 矿床地质, 1999, 18(4): 300-308.

HUA Ren-min, MAO Jing-wen. A preliminary discussion on the Mesozoic metallogenic explosion in East China [J]. Mineral Deposits, 1999, 18(4): 300–308.

[7] 莫柱荪, 叶伯丹, 潘维祖. 南岭花岗岩地质学[M]. 北京:地质出版社, 1980.

MO Zhu-sun, YE Bo-dan, PAN Wei-zu. Geology of Nanling Granites [M]. Beijing: Geological Publishing House, 1980.

[8] 徐克勤, 胡受奚, 孙明志, 叶 俊. 华南两个成因系列花岗岩类及其成矿特征[J]. 矿床地质, 1982(2): 1-14.

XU Ke-qin, HU Shou-xi, SUN Ming-zhi, YE Jun. On the two genetic series of granites in South Eastern China and their metallogenetic characteristics[J]. Mineral Deposits, 1982(2): 1-14.

[9] 徐克勤, 胡受奚, 孙明志, 张景荣, 叶 俊. 论花岗岩的成因系列—— 以华南中生代花岗岩为例[J]. 地质学报, 1983(2): 97-106.

XU Ke-qin, HU Shou-xi, SUN Ming-zhi, ZHANG Jing-rong, YE Jun. On the genetic series of granites, as exemplified by the Mesozoic granites of South China[J]. Acta Geol Sinica, 1983(2): 97-106.

[10] 毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2004, 11(1): 45-55.

MAO Jing-wen, XIE Gui-qing, LI Xiao-feng, ZHANG Chang-qing, MEI Yan-xiong. Mesozoic large scale mineralization and multiple lithospheric extension in South China[J]. Earth Science Frontiers, 2004, 11(1): 45-55.

[11] 周新民. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M]. 北京: 科学出版社, 2007: 179-195.

ZHOU Xin-min. Geneisis of granite and lithospheric dynamics evolution of late Mesozoic in Nanling[M]. Beijing: Science Press, 2007: 179-195.

[12] CHAPPELL B W. Two contrasting granite type[J]. Pacific Geology, 1974, 8: 173-174.

[13] ISHIHARA S. The magnetite-series and ilmenite-series granitic rocks[J]. Min Geol, 1977, 27: 293-305.

[14] LOISELLE M C, WONES D R. Characteristics and origin of anorogenic granites[J]. Geol Soc Am Abs Prog, 1979, 11(7): 468.

[15] 李洪昌, 唐先礼. 南岭地区地洼期酸性、中酸性小岩体特征及其与铅锌矿的关系[J]. 大地构造与成矿学, 1987, 11(3): 259-264.

LI Hong-chang, TANG Xian-li. Characteristics of the small acid and intermfdiate-acid intrusive bodies in Diwa stage of Nanling region and their relation to lead-zinc deposits [J]. Geotecton Metallogen, 1987, 11(3): 259-264.

[16] 毛景文, 谢桂青, 郭春丽, 陈毓川. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10): 2329-2338.

MAO Jing-wen, XIE Gui-qing, GUO Chun-li CHEN Yu-chuan. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 2007, 23(10): 2329-2338.

[17] 戴典文, 王宾海, 王 卡, 王诗潮, 王慧媛. 湖南省衡阳县当家冲矿区铜矿普查报告[R]. 长沙: 湖南省核工业地质局306大队. 2019-07-22.

DAI Dian-wen, WANG Bin-hai, WANG Ka, WANG Shi-chao, WANG Hui-yuan. Reconnaissance design document on the Dangjiachong Copper Deposit, Hengyang, Hunan Province[R]. Changsha: 306 Brigade of Hunan Nuclear Geology. 2019-07-22.

[18] LIU Yong-sheng, HU Zhao-chu, ZONG Ke-qing, GAO Chang-gui, GAO Shan, XU Juan, CHEN Hai-hong. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.

[19] ISHIKAWA Y, SAWAGUCHI T, IWAYA S, HORIUCHIHI M. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos [J]. Mining Geology, 1976, 26: 105-117.

[20] LARGE R R, GEMMELL J B, PAULICK H, HUSTON D. The alteration box plot: A simple approach to understanding the relationships between alteration mineralogy and lithogeochemistry associated with volcanic hosted massive sulfide deposits[J]. Economic Geology, 2001, 96: 957-971.

[21] PECCERILLO A, TAYLOR A R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

[22] MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geological Society of American Bulletin, 1989, 101(5): 635-643.

[23] IRVINE T H, BARAGAR W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548.

[24] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345.

[25] HOSKIN, P.W.O, SCHALTEGGER, U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews of Mineralogy and Geochemistry, 2003, 53: 27-62.

[26] 陈岳龙, 罗照华, 赵俊香, 李志红, 张宏飞, 宋 彪. 从锆石SHRIMP年龄及岩石地球化学特征论四川冕宁康定杂岩的成因[J]. 中国科学(D辑: 地球科学), 2004, 34(8): 687-697.

CHEN Yue-long, LUO Zhao-hua, ZHAO Jun-xiang, LI Zhi-hong, ZHANG Hong-fei, SONG Biao. Genesis of Diamictite in Kangding Area, Minning, Sichuan Province from studies of zircon SHRIMP dating and geochemical characteristics[J]. Science China: Earth Series D, 2004, 34(8): 687-697.

[27] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-286.

ZHAO Zhen-hua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers, 2010, 17(1): 267-286.

[28] 吴福元, 李献华, 杨进辉, 郑永飞. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238.

WU Fu-yuan, LI Xian-hua, YANG Jin-hui, ZHENG Yong-fei. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1218.

[29] RUBATTO D, GEBAUER D. Use of cathodoluminescence for U-Pb zircon dating by IOM microprobe: Some examples from the western[C]// Cathodoluminescence in Geoscience. Heidelberg, Germany: Springer-Verlag, 2000: 373-400.

[30] GRIFFIN W L, PEARSON N J, BELOUSOVA A E. The Hf isotope composition of cratonic mantle: LA-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

[31] CHAPPELL B W, WHITE A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2): 1-26.

[32] COLLINS W J, BEAMS S D, WHITE A J R, CHAPPELL B W. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 1982, 80(2): 189-200.

[33] WHALLEN J B, CURRIE K L, CHAPPELL B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4): 407-419.

[34] 贾小辉, 王 强, 唐功建. A型花岗岩的研究进展及意 义[J]. 大地构造与成矿学, 2009, 33(3): 465-480.

JIA Xiao-hui, WANG Qiang, TANG Gong-jian. A-type Granites: Research Progress and Implications[J]. Geotectonica et Metallogenia, 2009, 33(3): 465-480.

[35] PATINO DOUCE A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25: 743-746.

[36] WATSON E B, WARK D A, THOMAS J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151: 413-433.

[37] CHAPPELL B W. Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46: 535-551.

[38] RAPP R P, SHIMIZU N, NORMAN M D, APPLEGATE G S. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chem Geol, 1999, 160: 335-356.

[39] BARTH M G, MCDONOUGH W F, RUDNICK R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213.

[40] WOODHEAD J D, HERGT J M, DABIDSON J P, EGGINS S M. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes[J]. Earth & Planetary Science Letters, 2001, 192(3): 331-346.

[41] YANG J H, WU F Y, SHAO A W, XIE L W, LIU X M. Constraints on the timing of uplift of the Yanshan Fold and Trust Belt, North China[J]. Earth Planet Sci Lett, 2006, 246: 1096-1116.

[42] NABELEK P I, BARTLETT C D. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks[J]. Lithos, 1998, 45: 71-85.

[43] 吴福元, 李献华, 郑永飞, 高 山. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.

WU Fu-yuan, LI Xian-hua, ZHENG Yong-fei GAO S. Lu-Hf isotopic systematic and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220.

[44] 张 旗, 王 焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269.

ZHANG Qi, WANG Yan, LI Cheng-dong, WANG Yuan-long, JIN Wei-jun, JIA Xiu-qin. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(9): 2249-2269.

[45] 李献华, 李寄嵎, 刘 颖, 陈多福, 王一先, 赵振华. 华夏古陆古元古代变质火山岩的地球化学特征及其构造意 义[J]. 岩石学报, 1999, 15(3): 364-371.

LI Xian-hua, LI Ji-yu, LIU Ying, CHEN Duo-fu, WANG Yi-xian, ZHAO Zhen-hua. Geochemistry characteristics of the Paleoproterozoic meta-volcanics in the Cathaysia block and its tectonic significance[J]. Acta Petrologica Sinica, 1999, 15(3): 364-371.

[46] KEMP A I, HAWKESWORTH C J, FOSTER G L PATERSON B A, WOODHEAD J D, HERGT J M. Magmatic and crustal differentiation history of granitic rocks from Hf-O Isotopes in zircon[J]. Science, 2007, 315(5814): 980.

[47] COLLINS W J. Upper- and middle-crustal response to delamination: An example from the Lachlan fold belt, eastern Australia[J]. Geology, 1994, 22: 143-146.

[48] COSTA S, REY P. Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan metamorphic core complex[J]. Geology, 1995, 23: 905-908.

[49] BONIN B, AZZOUNI-SEKKAL A, BUSSY F, FERRAG S. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings[J]. Lithos, 1998, 45: 45-70.

[50] PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrology, 1984, 25: 956-983.