网络首发时间: 2018-11-29 17:40

硅酸钠在镁合金表面生成微弧氧化膜时的作用

孙乐 马颖 董海荣 安凌云 王晟

兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室

摘 要:

分别在不添加和添加硅酸钠的电解液中采用微弧氧化(MAO)技术在AZ91D镁合金表面上制备膜层,研究微弧氧化过程中,电解液中的硅酸钠在镁合金表面形成微弧氧化膜层时的作用,分析电解液中硅酸钠的有无对微弧氧化膜层的影响。膜层的微观结构及物相组成分别通过扫描电镜(SEM)和X射线衍射仪(XRD)进行分析,膜层的耐蚀性通过电化学工作站来表征。结果表明:镁合金微弧氧化过程中,电解液中硅酸钠的加入,将会促使在基材表面生成具有平面连续性的完整的微弧氧化膜层,同时改善膜层的致密性,并获得优质新物相Mg2SiO4。随着电解液中硅酸钠的加入,溶液的电导率增大,基材表面的起弧电压降低,击穿变得容易发生。SiO32-离子与电解液中的其他阴离子协同作用,使得阳极表面微观电位强弱区的对比态势加剧,从而促使放电火花的燃、熄两种状态在基材表面此起彼伏、交替进行,并由此加速了放电火花在基材表面的辗转游移,继而避免了局部热量累积有可能造成的宏观小凹坑的出现,以及微观裂纹的产生。电解液中加入硅酸钠后,所得膜层的腐蚀电流密度减小了1个数量级,线性极化电阻增大了约16倍,膜层的耐蚀性明显得到提高。

关键词:

镁合金;微弧氧化;硅酸钠;成膜性;耐蚀性;

中图分类号: TG174.4

作者简介:孙乐(1986-),男,江西吉安人,博士研究生,研究方向:轻金属的表面改性与防护;E-mail:sl7398821@163.com;;*马颖,教授;电话:0931-2973563;E-mail:maying@lut.cn;

收稿日期:2018-09-26

基金:甘肃省创新研究群体计划项目(1111RJDA011)资助;

Role of Sodium Silicate for Coating Forming on Magnesium Alloys with Micro Arc Oxidation

Sun Le Ma Ying Dong Hairong An Lingyun Wang Sheng

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology

Abstract:

AZ91 D magnesium alloys were processed by micro are oxidation(MAO) in electrolytes without and with sodium silicate,respectively.The role of sodium silicate during MAO treatment was investigated and its effect on MAO coatings was analyzed.Scanning electron microscope(SEM) and X-ray diffraction(XRD) were employed to characterize the microstructure and phase composition of MAO coatings,respectively.And the corrosion resistance of MAO coatings was evaluated by electrochemical workstation.The results showed that a complete,uniform coating was obtained during MAO treatment once sodium silicate was added into the electrolyte,and in turn,the coating's compactness was improved and a new phase Mg2 Si04 with excellent properties was generated in the coatings.With addition of sodium silicate into the electrolyte,the solution conductivity increased and the ignition voltage on specimen surfaces decreased during MAO process,which facilitated a breakdown easily developing on specimen surfaces.Further on this foundation,the competing state in terms of the potential levels in different areas would be enhanced on the anode surface under the coactions between the silicate ions and other anions in the electrolyte,which,in turn,accelerated the sparks' moving phenomena around the coatings' surfaces due to the igniting and extinguishing of the sparks appearing alternately on specimen surfaces.Consequently,the macro-scale pits and the micro-cracks caused by the local thermal accumulation had eliminated on the coatings' surfaces.As a result,the corrosion resistance of MAO coatings formed in the electrolyte with sodium silicate was improved obviously by demonstration of the decreasing of the corrosion current density of the coatings with one order of magnitude and increasing of their linear polarization resistance with sixteen times.

Keyword:

magnesium alloy; micro arc oxidation; sodium silicate; coating forming; corrosion resistance;

Received: 2018-09-26

镁合金因具有比重小、强度高、优良的切削加工性能和减震性能、以及良好的电磁屏蔽性能和阻尼性能等优点,使其广泛应用在航空航天、电子、汽车、3C产品等领域 [1,2,3] ,并且成为有色金属材料中最具发展潜力的超轻结构材料,同时被誉为“21世纪绿色工程材料”。然而,镁合金化学稳定性差、电极电位低、耐磨性、耐蚀性差 [1,2,3] 等缺陷成为限制其广泛应用的巨大障碍,因此在投入工业应用之前有必要对镁合金进行适当的表面处理。近年来,广大的科技工作者开发出了很多表面处理技术来提高镁合金的耐蚀性,其中新兴起的微弧氧化(MAO)技术应用最广泛,它可以直接在Mg,Al,Ti等有色轻金属及其合金表面原位生成一层陶瓷膜,并且该技术电解液环境友好、较少或不需要前处理、生成的膜层与基体结合力强,能明显提高镁合金的耐蚀性和耐磨性 [4,5,6,7]

研究表明,镁合金微弧氧化膜的微观结构及性能受到多个工艺参数的影响,如电流密度 [8,9] 、脉冲频率 [10,11] 、占空比 [12,13] 及电解液成分、浓度 [14,15,16] 等。在针对电解液的研究中,目前文献的报道主要集中在诸多电解质,如硅酸钠 [17,18] 、铝酸钠 [19] 、磷酸钠 [11] 、氢氧化钾 [20] 、氟化钠 [21] 、甘油 [22] 等浓度大小的变化对微弧氧化膜结构和性能影响的方面,而探究不同电解质在电解液中起到了什么作用,扮演了怎样的角色等方面的研究却很少。基于此,本文以AZ91D镁合金为基材,首选出现频率高的硅酸钠为研究对象,在氟化钾和氢氧化钠组成的基础电解液中,分别不添加及添加硅酸钠,通过分析电解液中不存在及存在硅酸钠时对镁合金微弧氧化过程中的起弧电压、放电火花状态的变化、膜层厚度、微观形貌、物相组成等诸多方面的影响,研究微弧氧化过程中,电解液中的硅酸钠在镁合金表面生成微弧氧化膜层时的作用机制,为研发微弧氧化电解液配方提供理论依据。

1 实验

1.1 材料与试剂

本实验选择的基材为商用铸态AZ91D镁合金,其中各元素的质量分数分别为Al 8.3%~9.7%,Zn 0.35%~1.0%,Mn 0.17%~0.27%,Si≤0.05%,Cu≤0.025%,Ni≤0.001%,Fe≤0.004%,其余的为Mg。通过线切割将AZ91D镁合金铸锭加工成大小为:30 mm×20 mm×11 mm的长方体试样,然后在试样的一侧用Φ2.5 mm的钻头钻孔,接下来用Φ3 mm的丝锥攻内螺纹。实验之前,先对试样表面进行预处理,即用120号的粗金相砂纸对试样进行初级打磨,再依次用600,1000,1600,2200号的金相砂纸对试样进行精细打磨,然后抛光处理,再用清水冲洗,最后吹干备用。微弧氧化时镁合金试样与Φ3 mm的铝丝相连,铝丝的另一端用螺纹紧固件固定在电源支架上。实验过程中阳极为镁合金试样,阴极为不锈钢片。

本实验中基础电解液的成分为氟化钾和氢氧化钠,分别往基础电解液中不添加及添加硅酸钠,其中不添加硅酸钠的电解液命名为G1,添加硅酸钠的电解液命名为G2,两种电解液的成分如表1所示。实验过程中采用水冷的方式对电解液进行冷却,使电解液的温度基本控制在20~40℃的范围内。设备采用兰州理工大学自主研发的微弧氧化双极性脉冲电源,输出额定功率为220 kW,额定正负电压分别为500 V和200 V,正负电流分别为400 A和100 A,脉冲频率范围为100~1000 Hz,脉冲占空比范围为10%~90%。实验过程中频率为700 Hz,占空比为20%,并将镁合金试样分别放入G1,G2两种电解液中进行微弧氧化处理,采用相同的电压加载方式(图1),即微弧氧化过程中逐步提高电压。

1.2 表征方法

使用DDS-307W型微处理器电导仪来测量电解液的电导率。使用索尼(SONY) ILCE-7K型照相机来拍摄实验过程中试样表面放电火花形态的变化和试样的宏观形貌。微弧氧化膜层的表面与截面形貌通过HITACHI S-4700型和QUANTA-450FEG型扫描电子显微镜(SEM)来观察。微弧氧化膜层的厚度、平均微孔尺寸和表面孔隙率都采用Image J通用图像分析软件分别对膜层截面形貌和表面形貌进行测量而获得。使用日本理光的D9-ADVANCE型X射线衍射仪(XRD)来检测微弧氧化膜层的物相,其中衍射条件:阳极选用铜靶,电子加速电压:40 kV,电流:60 mA,入射角:3°,扫描的范围、步长分别为:20°~80°和0.02°。通过CHI660C型电化学工作站来表征微弧氧化膜层的耐蚀性,使用三电极体系进行评估,其中工作电极为镁合金试样,参比电极为饱和甘汞电极(SCE),辅助电极为铂电极。在测动电位极化曲线之前,将镁合金试样表面裸露出面积为1cm2大小的区域并在质量分数为3.5%的氯化钠溶液中浸泡30min,电位扫描范围为-1.9~-1.0 V,扫描速率为0.5 mV·s-1

表1 G1和G2两电解液中的成分  下载原图

Table 1 Compositions of different electrolytes

图1 电压加载方式

Fig.1 Loading mode of voltages

2 结果与讨论

2.1 微弧氧化过程中放电火花状态的变化

G1和G2两电解液中溶液的电导率、基材表面的起弧电压及放电火花的状态如表2所示,图2则为微弧氧化不同处理时间段基材表面放电火花的变化情形。从表2中明显可以看出,电解液中不添加硅酸钠时,溶液的电导率和起弧电..压分别为22.5 ms·cm-1和285 V,但是,添加硅酸钠后溶液的电导率曾大了10.4 ms·cm-1,起弧电压减小了40 V。在试验过程中可以观察到,电解液中不存在硅酸钠时,起弧后基材表面上大部分放电火花的状态是长时间停留在基材表面的某个固定位置,出现了类烧蚀的现象,并且放电火花的数量不多(图2(a~c))。而电解液中加入硅酸钠后,观察到放电火花在基材表面的位置不再固定,而是不断地辗转游移,并且类烧蚀现象也消失,放电火花变得密集并且数量增多(图2(d~f))。

表2 G1和G2两电解液中溶液电导率、起弧电压及基材表面放电火花状态  下载原图

Table 2 Solution conductivity,ignition voltage and spark state on coated substrate surface in different electrolytes

图2 G1和G2两电解液中微弧氧化过程中放电火花的变化

Fig.2 Sparks on substrate surface observed at different time during MAO treatment in different electrolytes

(a) G1 electrolyte-4 min;(b) G1 electrolyte-7 min;(c) G1 electrolyte-10 min;(d) G2 electrolyte-4 min;(e) G2 electrolyte-7 min;(f) G2 electrolyte-10 min

在用微弧氧化技术处理AZ91D镁合金的试验过程中,大量的微区放电击穿在基材表面不断地发生、结束、再发生、再结束 [23] 。与不含硅酸钠相比,电解液中添加硅酸钠后,电解液中导电的离子增多,电导率必然增大,即电解液的等效电阻必然减小,则加载电压一样时,电解液两端分到的电压必然减小,这样一来基材表面会被击穿的介质(气体及已成膜层)两端分到的电压必定增大,其对映的电场强度也随之增大,击穿就容易发生了,从而使得基材表面的起弧电压降低,基材表面微区击穿发生的数量增多,致使基材表面火花的数量也增多。同时,微弧氧化膜层生长过程中,由于基材表面不同位置微区击穿的难易程度不同,膜层表面某些薄弱位置会先于其他位置发生击穿,新的膜层随之出现,致使该微区的局部电位与周边区域的产生新差异,击穿难度增大,因此下一次微区击穿将发生在基材表面其他相对较薄弱的地方,然后这一过程在基材表面再循环往复。电解液中 的存在使得更多阴离子被阳极吸附而与镁离子结合反应生成膜层,造成阳极表面微观电位的强新区和旧弱区的对比态势加剧,从而促使放电火花的燃、熄两种状态在基材表面此起彼伏、交替进行,避免了局部类烧蚀现象的出现,并以此循环往复,最终观察到的现象就是放电火花在基材表面辗转游移。

2.2 微弧氧化膜层的宏观形貌及其厚度

图3为G1和G2两电解液中微弧氧化处理后膜层的宏观形貌。从图3中明显可以观察到,电解液中不存在硅酸钠时,膜层表面的粗糙度较大,而且各个位置均出现了许多大小不一的小凹坑。经实验前后比照发现,在基材表面放电火花滞留时间较长的位置处,小凹坑的尺寸也相对较大(图3(a))。但是,电解液中加入硅酸钠后,膜层表面比较光滑,平整性较好,不再出现小凹坑(图3(b)),膜层表面凹凸不平的状态明显得到了改变。

图3 G1和G2两电解液中微弧氧化膜的宏观形貌

Fig.3 Macroscopic morphologies of MAO coatings obtained in different electrolytes

(a) G1 electrolyte;(b)G2 electrolyte

表3为G1和G2两电解液中制备得到的膜层厚度。从表3中明显可以看出,电解液中不添加硅酸钠时,膜层的厚度为16.5μm,但是,加入硅酸钠后,膜层的厚度增大了3.2μm。

2.3 微弧氧化膜层的微观形貌及物相组成

图4为G1和G2两电解液中所获得的微弧氧化膜层的表面和截面形貌,图5为图4(a)和图4(e)中微弧氧化膜层表面不同微观区域的局部放大图,图6是对微弧氧化膜层截面的进一步观察。表4为G1和G2两电解液中所获得的微弧氧化膜层(图5(b,c))表面的平均微孔尺寸及孔隙率。

表3 G1和G2两电解液中所得膜层的厚度  下载原图

Table 3 Thickness of MAO coatings obtained in different electrolytes

图4 G1和G2两电解液中微弧氧化膜的表面及截面形貌

Fig.4 Surface and cross-section morphologies of MAO coatings obtained in different electrolytes

(a),(b)G1 electrolyte;(c),(d) G2 electrolyte

图5 图4中A,B,C区域的局部放大图

Fig.5 Local magnification images of A,B,C regions shown in Fig.4

v

从图4中可以看出,电解液中不添加硅酸钠时,所得微弧氧化膜层表面凹凸不平,比较粗糙,出现了很多小凹坑(图4(a))。从图4(b)中可以看出,凹坑位置微弧氧化膜层的厚度与其他部位相差不大,并且可以观察到,小凹坑处对应的微弧氧化膜层表面上也同样布满了“火山口”状的微孔(图5(a));而电解液中添加硅酸钠后,所得微弧氧化膜层表面光滑平整,不再出现小凹坑,膜层的平面连续性明显增强(图4(c,d))。

从图5(a,b),图6(a)以及表4中可以看到,电解液中不存在硅酸钠时,所得微弧氧化膜层表面平均微孔尺寸较大,表面孔隙率也较大,膜层表面上微观裂纹较多(图5(a,b)),膜层截面中出现了较多的孔隙,并且有些地方还出现了连通孔(图6 (a))。而电解液中添加硅酸钠后,所得微弧氧化膜层表面平均微孔尺寸减小了1.3μm(表4),表面孔隙率减小了4.7%(表4),膜层表面上基本不存在微裂纹(图5(c)),并且膜层截面中的孔隙数量明显减少,同时连通孔消失(图6(b)),整个膜层的致密度得到了明显提高。

表4 G1和G2两电解液中所得膜层表面的平均微孔尺寸及孔隙率  下载原图

Table 4 Average size of micro pores and surface porosity of MAO coatings obtained in different electrolytes

图7为G1和G2两电解液中所获得的微弧氧化膜层的XRD图谱。从图7 (a)中可以看出,电解液中不添加硅酸钠时,微弧氧化膜层中的主要物相为MgO,MgF2等,其可能的形成反应 [23] 如下式(1),(2)。从图7(b)中可以看出,电解液中添加硅酸钠后,微弧氧化膜层中依然出现了MgO,MgF2等物相,同时还获得了优质新物相Mg2SiO4(式(3)),这种物相属于氟镁石,结构坚硬、性能稳定,它的存在有利于提高微弧氧化膜层的耐蚀性能。另外,Mg和Mg17Al12这两相均来自AZ91D镁合金基体。从图7中明显可以看出,无论电解液中是否添加硅酸钠,在微弧氧化膜层中都能检测到MgO和MgF2物相,这充分说明,在微弧氧化过程中,电解液中的氧离子和氟离子都容易和来自基体的镁离子发生电化学反应。但电解液中添加硅酸钠后,来自基体的一部分镁离子会与电解液中的 发生电化学反应,故在微弧氧化膜层中生成了优质新物相Mg2SiO4

图6 G1和G2两电解液中微弧氧化膜的截面形貌

Fig.6 Cross-section morphologies of MAO coatings obtained in different electrolytes

(a) G1 electrolyte;(b)G2 electrolyte

图7 G1和G2两电解液中微弧氧化膜的XRD图谱

Fig.7 XRD patterns of MAO coatings obtained in different electrolytes

(a) G1 electrolyte;(b)G2 electrolyte

在用微弧氧化技术处理AZ91D镁合金的试验过程中观察到,当电解液中不存在硅酸钠时,放电火花在基材表面的某些位置持续逗留,这表明这些位置上连续发生了击穿反应。由于击穿过程中会产生大量的热量,并且热量会在这些位置不断地积累,进而使得较多的基体材料被烧蚀熔融继而崩落,同时,由于热量的集中,会使微弧氧化膜层中的热应力形成局部累积,接着导致已形成膜层的局部膨胀甚至崩落,这些因素都可能是膜层表面出现宏观小凹坑以及产生微观裂纹的原因。前已述及,电解液中添加硅酸钠以后, 的存在使得微弧氧化过程中膜层表面的放电火花在基材表面不断游走,至此可以继续推演, 是与电解液中的其他阴离子协同作用,使得阳极表面微观电位强弱区的对比态势加剧,由此加速了放电火花在基材表面的辗转游移。进一步讲,半径由小到大的四种阴离子,即氟离子、氧离子、氢氧根离子、硅酸根离子,会被不断吸附到阳极表面发生反应,但由于彼此间的尺寸不同而带来的吸附效应的不同,以及各自反应消耗量的不同,它们将会在阳极周围形成浓度起伏,因此就会与阳极表面的镁离子交替不断地发生电化学反应,继而在基材表面生成具有平面连续性的完整的微弧氧化膜层。

2.4 微弧氧化膜层的耐蚀性

研究表明 [2,24] :微弧氧化膜层的腐蚀速率V和腐蚀电流密度Jcorr之间的关系如式(4)所示:

式中,V为腐蚀速率(mm·s-1);F为法拉第常数;M为金属的相对原子质量(g·mol-1);n为金属的化合价;ρ为金属的密度;Jcorr为腐蚀电流密度(A·cm-2)。

从式(4)中可以看出:腐蚀电流密度Jcorr表示电化学腐蚀的快慢,即腐蚀速率V,Jcorr越小,电化学腐蚀越慢,腐蚀速率就越小,所得膜层的耐蚀性就越好。腐蚀电位Ecorr则表示电化学腐蚀的倾向,Ecorr越正,腐蚀倾向就越小,所得膜层的耐蚀性也就越好 [2,24]

图8为C1和C2两电解液中所获微弧氧化膜层的动电位极化曲线,表5为动电位极化曲线的拟合数据。结合图8和表5可知,与不添加硅酸钠相比,电解液中添加硅酸钠后,所得微弧氧化膜层的腐蚀电位Ecorr发生了明显正移,正移了约110 mV,腐蚀电流密度Jcorr减小了1个数量级,线性极化电阻Rp、增大了约16倍,膜层的耐蚀性明显得到了提高。

研究表明 [13,18] ,微弧氧化膜层的耐蚀性能主要受膜层厚度、膜层成分及物相组成、膜层致密度(膜层的孔径大小、孔隙率、孔的形态)、膜层表面缺陷(大孔和微裂纹)等微观特征结构参量的影响,而且其性能的优劣取决于这些微观特征结构参量之间的相互作用。因此,本研究中,膜层的耐蚀性也将受这四大方面因素的影响。

图8 G1和G2两电解液中微弧氧化膜层的动电位极化曲线

Fig.8 Potentiodynamic polarization curves of MAO coatings obtained in different electrolytes

表5 G1和G2两电解液中微弧氧化膜层的动电位极化曲线的拟合结果  下载原图

Table 5 Fitted results of potentiodynamic polarization curves of MAO coatings obtained in different e-lectrolytes

与不含硅酸钠相比,电解液中添加硅酸钠后,微弧氧化膜层的厚度增大了3.2μm(表3),这对提高微弧氧化膜层的耐蚀性有利。并且微弧氧化膜层表面的平均微孔尺寸减小了1.3μm(表4),表面孔隙率减小了4.7%(表4),膜层表面上基本不存在小凹坑(图4(c))和微裂纹(图5(c)),膜层截面中的孔隙数量明显减少,同时连通孔消失(图6(b))),整个膜层的致密性得到了明显改善,因此,外界环境中的腐蚀介质就不容易穿过膜层去腐蚀基体,故微弧氧化膜层的耐蚀性能明显得到提高。另外从物相的角度看,含硅酸钠的电解液制备得到的微弧氧化膜层中出现了新物相Mg2SiO4,这种物相属于氟镁石,结构坚硬、性能稳定,它的存在对微弧氧化膜层耐蚀性能的提高也非常有利。

3 结论

1.电解液中添加硅酸钠后,将会促使在镁合金基材表面生成具有平面连续性的完整的微弧氧化膜层,同时膜层的致密性明显得到改善,并获得优质新物相Mg2SiO4

2.电解液中添加硅酸钠后,溶液的电导率增大,基材表面的起弧电压降低,击穿变得容易发生。 与电解液中的其他阴离子协同作用,使得阳极表面微观电位强弱区的对比态势加剧,从而促使放电火花的燃、熄两种状态在基材表面此起彼伏、交替进行,由此加速了放电火花在基材表面的辗转游移,继而避免局部热量累积有可能造成的宏观小凹坑的出现,以及微观裂纹的产生。

3. 耐蚀性检测结果表明,与不添加硅酸钠相比,电解液中添加硅酸钠后,所得膜层的腐蚀电位正移了110 mV,腐蚀电流密度减小了1个数量级,线性极化电阻增大了约16倍,膜层的耐蚀性明显增强。

参考文献

[1] Liu C C,Liang J,Zhou J S,Li Q B,Wang L Q.Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation[J].Applied Surface Science,2016,382(8):47.

[2] Wang J,Luo B H,Bai Z H,Gao Y,Zheng Y Y,Ren Z W.Micro-structures and properties of Al-Mg-Si casting alloy with different Mg/Si ratios[J].Chinese Journal of Rare Metals,2018,42(7):681.(汪娟,罗兵辉,柏振海,高阳,郑亚亚,任智炜.Mg/Si对Al-Mg-Si铸造合金组织和性能的影响[J].稀有金属,2018,42(7):681.)

[3] Zhao X,Jia R L,Zhou W G,Guo F.Effect of rare earth on corrosion products and impedance behavior or of AZ91 magnesium alloy under dry-wet cycles[J].Journal of Materials Engineering,2017,45(4):41.(赵曦,贾瑞灵,周伟光,郭锋.稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J].材料工程,2017,45(4):41.)

[4] Qian Z Q,Wu Z J,Wang S D,Zhang H F,Liu H N,Ye X S,Li Q.Research progress in preparation of superhydrophobic coatings on inagnesium alloys and its application[J].Materials Review A,2018,32(1):102.(钱志强,吴志坚,王世栋,张慧芳,刘海宁,叶秀深,李权.镁合金超疏水表面的制备技术与应用研究进展[J].材料导报A,2018,32(1):102.)

[5] Rehman Z U,Shin S H,Hussain I,Koo B H.Structure and corrosion properties of the two step PEO coatings formed on AZ91D mg alloy in K_2ZrF_6-based electrolyte solution[J].Surface and Coatings Technology,2016,307(5):484.

[6] Wang H M,Yin Y L,Du J,Qiu J,Ma S N.Effects of Na_5P_3O_(10)concentration on micro-structures and corrosion resistance of micro-arc oxidation coating on 5083 aluminum alloy[J].China Surface Engineering,2016,29(5):109.(王红美,尹艳丽,杜军,邱骥,马世宁.磷酸盐浓度对5083铝合金微弧氧化膜组织与耐腐蚀性能的影响[J].中国表面工程,2016,29(5):109.)

[7] Jiang Y L,Wang J K,Hu B,Yao Z P,Xia Q X,Jiang Z H.Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation[J].Surface and Coatings Technology,2016,307(4):1297.

[8] Rapheal G,Kumar S,Scharnagl N,Blawert C.Effect of current density on the micro-structures and corrosion properties of plasma electrolytic oxidation(PEO)coatings on AM50 mg alloy produced in an electrolyte containing clay additives[J].Surface and Coatings Technology,2016,289(10):150.

[9] Chen W W,Wang Z X,Sun L,Lu S.Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode[J].Journal of Magnesium and Alloys,2015,3(5):253.

[10] Gu Y H,Ning C Y,Yu Z X,Li H L,Xiong W M,Chen L L.Effect of pulse frequency on the corrosion behavior of micro-arc oxidation coating on mg alloys in SBF[J].Rare Metal Materials and Engineering,2014,43(10):2463.(顾艳红,宁成云,余遵雄,李红龙,熊文名,陈玲玲.脉冲频率对镁合金微弧氧化膜层在仿生液中耐蚀性的影响[J].稀有金属材料与工程,2014,43(10):2463.)

[11] Srinivasan P B,Liang J,Balajeee R G,Blawert C.Effect of pulse frequency on the micro-structures,phase composition and corrosion performance of a phosphate based plasma electrolytic oxidation coated AM50 magnesium alloy[J].Applied Surface Science,2010,256(12):3928.

[12] Cui X J,Wang R,Wei J S,Bai C B,Lin X Z.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy[J].Journal of Chinese Society for Corrosion and Protection,2014,34(6):495.(崔学军,王荣,魏劲松,白成波,林修洲.电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J].中国腐蚀与防护学报,2014,34(6):495.)

[13] Ma Y,Zhan H,Ma Y Z,Lti W L,Feng J Y,Gao W.Effects of electrical parameters on micro-structures and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys[J].The Chinese Journal ofNonferrous Metals,2010,20(8):1467.(马颖,詹华,马跃洲,吕维玲,冯君艳,高唯.电参数对AZ91D镁合金微弧氧化膜层微观结构及耐蚀性的影响[J].中国有色金属学报,2010,20(8):1467.)

[14] Vatan N H,Ebrahimi-kahrizsangi R,Kasiri-asgarani M.Structural,tribological and electrochemical behavior of SiC nanocomposite oxide coatings fabricated by plasma electrolytic oxidation(PEO)on AZ31 magnesium alloy[J].Journal of Alloys and Compounds,2016,68(3):241.

[15] Gnedenkov S V,Sinebryukhov S L,Ma-shtalyar D V.Protective composite coatings obtained by plasma electrolytic oxidation on magnesium alloy MA8[J].Vacuum,2015,120(2):107.

[16] Einkhah F,Lee K M,Sani M A F,Yoo B Y,Shin D H.Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation[J].Surface and Coatings Technology,2014,238(5):75.

[17] Salami B,Afshar A,Mazaheri A.The effect of sodium silicate concentration on micro-structures and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid[J].Journal of Magnesium and Alloys,2014,2(1):72.

[18] Zhang R F,Zhang S F,Xiang J H,Zhang L H,Zhang Y Q,Guo S B.Influence of sodium silicate concentration on properties of micro-arc oxidation coatings formed on AZ91HP magnesium alloys[J].Surface and Coatings Technology,2012,206(24):5072.

[19] Luo R X,Mu W Y,Lei J J.Properties of AZ91D mag-nesium alloy film treated by micro-arc oxidation[J].Rare Metal Materials and Engineering,2014,43(1):319.(骆瑞雪,慕伟意,雷嘉骏.AZ91D镁合金微弧氧化膜层性能的研究[J].稀有金属材料与工程,2014,43(1):319.)

[20] Ko Y G,Namgung S,Shin D H.Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation[J].Surface and Coatings Technology,2010,205(7):2525.

[21] Li H L,Ning C Y,Lao Y H,Tan G X,Guo Y J,Liao J W.Influence of the fluoride ion concentration on the micro-arc oxidation coating of magnesium alloy substrate[J].Rare Metal Materials and Engineering,2013,42(8):1707.(李红龙,宁成云,劳永华,谭帼馨,郭远军,廖景文.氟离子浓度对镁合金微弧氧化膜层形成影响规律[J].稀有金属材料与工程,2013,42(8):1707.)

[22] Wu D,Liu X D,Lu K,Zhang Y P,Wang H.Influence of C_3H_8O_3 in the electrolyte on characteristics and corrosion resistance of the micro-arc oxidation coatings formed on AZ91D magnesium alloy surface[J].Applied Surface Science,2009,255(16):7115.

[23] Yerokhin A L,Nie X Y,Leyland A,Matthews A,Dowey S J.Plasma electrolysis for surface engineering[J].Surface and Coatings Technology,1999,122(11):73.

[24] Cao C N.Principles of Electrochemistry of Corrosion[M].Beijing:Chemical Industry Press,2008.122.(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2008.122.)

[1] Liu C C,Liang J,Zhou J S,Li Q B,Wang L Q.Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation[J].Applied Surface Science,2016,382(8):47.

[2] Wang J,Luo B H,Bai Z H,Gao Y,Zheng Y Y,Ren Z W.Micro-structures and properties of Al-Mg-Si casting alloy with different Mg/Si ratios[J].Chinese Journal of Rare Metals,2018,42(7):681.(汪娟,罗兵辉,柏振海,高阳,郑亚亚,任智炜.Mg/Si对Al-Mg-Si铸造合金组织和性能的影响[J].稀有金属,2018,42(7):681.)

[3] Zhao X,Jia R L,Zhou W G,Guo F.Effect of rare earth on corrosion products and impedance behavior or of AZ91 magnesium alloy under dry-wet cycles[J].Journal of Materials Engineering,2017,45(4):41.(赵曦,贾瑞灵,周伟光,郭锋.稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J].材料工程,2017,45(4):41.)

[4] Qian Z Q,Wu Z J,Wang S D,Zhang H F,Liu H N,Ye X S,Li Q.Research progress in preparation of superhydrophobic coatings on inagnesium alloys and its application[J].Materials Review A,2018,32(1):102.(钱志强,吴志坚,王世栋,张慧芳,刘海宁,叶秀深,李权.镁合金超疏水表面的制备技术与应用研究进展[J].材料导报A,2018,32(1):102.)

[5] Rehman Z U,Shin S H,Hussain I,Koo B H.Structure and corrosion properties of the two step PEO coatings formed on AZ91D mg alloy in K_2ZrF_6-based electrolyte solution[J].Surface and Coatings Technology,2016,307(5):484.

[6] Wang H M,Yin Y L,Du J,Qiu J,Ma S N.Effects of Na_5P_3O_(10)concentration on micro-structures and corrosion resistance of micro-arc oxidation coating on 5083 aluminum alloy[J].China Surface Engineering,2016,29(5):109.(王红美,尹艳丽,杜军,邱骥,马世宁.磷酸盐浓度对5083铝合金微弧氧化膜组织与耐腐蚀性能的影响[J].中国表面工程,2016,29(5):109.)

[7] Jiang Y L,Wang J K,Hu B,Yao Z P,Xia Q X,Jiang Z H.Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation[J].Surface and Coatings Technology,2016,307(4):1297.

[8] Rapheal G,Kumar S,Scharnagl N,Blawert C.Effect of current density on the micro-structures and corrosion properties of plasma electrolytic oxidation(PEO)coatings on AM50 mg alloy produced in an electrolyte containing clay additives[J].Surface and Coatings Technology,2016,289(10):150.

[9] Chen W W,Wang Z X,Sun L,Lu S.Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode[J].Journal of Magnesium and Alloys,2015,3(5):253.

[10] Gu Y H,Ning C Y,Yu Z X,Li H L,Xiong W M,Chen L L.Effect of pulse frequency on the corrosion behavior of micro-arc oxidation coating on mg alloys in SBF[J].Rare Metal Materials and Engineering,2014,43(10):2463.(顾艳红,宁成云,余遵雄,李红龙,熊文名,陈玲玲.脉冲频率对镁合金微弧氧化膜层在仿生液中耐蚀性的影响[J].稀有金属材料与工程,2014,43(10):2463.)

[11] Srinivasan P B,Liang J,Balajeee R G,Blawert C.Effect of pulse frequency on the micro-structures,phase composition and corrosion performance of a phosphate based plasma electrolytic oxidation coated AM50 magnesium alloy[J].Applied Surface Science,2010,256(12):3928.

[12] Cui X J,Wang R,Wei J S,Bai C B,Lin X Z.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy[J].Journal of Chinese Society for Corrosion and Protection,2014,34(6):495.(崔学军,王荣,魏劲松,白成波,林修洲.电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J].中国腐蚀与防护学报,2014,34(6):495.)

[13] Ma Y,Zhan H,Ma Y Z,Lti W L,Feng J Y,Gao W.Effects of electrical parameters on micro-structures and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys[J].The Chinese Journal ofNonferrous Metals,2010,20(8):1467.(马颖,詹华,马跃洲,吕维玲,冯君艳,高唯.电参数对AZ91D镁合金微弧氧化膜层微观结构及耐蚀性的影响[J].中国有色金属学报,2010,20(8):1467.)

[14] Vatan N H,Ebrahimi-kahrizsangi R,Kasiri-asgarani M.Structural,tribological and electrochemical behavior of SiC nanocomposite oxide coatings fabricated by plasma electrolytic oxidation(PEO)on AZ31 magnesium alloy[J].Journal of Alloys and Compounds,2016,68(3):241.

[15] Gnedenkov S V,Sinebryukhov S L,Ma-shtalyar D V.Protective composite coatings obtained by plasma electrolytic oxidation on magnesium alloy MA8[J].Vacuum,2015,120(2):107.

[16] Einkhah F,Lee K M,Sani M A F,Yoo B Y,Shin D H.Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation[J].Surface and Coatings Technology,2014,238(5):75.

[17] Salami B,Afshar A,Mazaheri A.The effect of sodium silicate concentration on micro-structures and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid[J].Journal of Magnesium and Alloys,2014,2(1):72.

[18] Zhang R F,Zhang S F,Xiang J H,Zhang L H,Zhang Y Q,Guo S B.Influence of sodium silicate concentration on properties of micro-arc oxidation coatings formed on AZ91HP magnesium alloys[J].Surface and Coatings Technology,2012,206(24):5072.

[19] Luo R X,Mu W Y,Lei J J.Properties of AZ91D mag-nesium alloy film treated by micro-arc oxidation[J].Rare Metal Materials and Engineering,2014,43(1):319.(骆瑞雪,慕伟意,雷嘉骏.AZ91D镁合金微弧氧化膜层性能的研究[J].稀有金属材料与工程,2014,43(1):319.)

[20] Ko Y G,Namgung S,Shin D H.Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation[J].Surface and Coatings Technology,2010,205(7):2525.

[21] Li H L,Ning C Y,Lao Y H,Tan G X,Guo Y J,Liao J W.Influence of the fluoride ion concentration on the micro-arc oxidation coating of magnesium alloy substrate[J].Rare Metal Materials and Engineering,2013,42(8):1707.(李红龙,宁成云,劳永华,谭帼馨,郭远军,廖景文.氟离子浓度对镁合金微弧氧化膜层形成影响规律[J].稀有金属材料与工程,2013,42(8):1707.)

[22] Wu D,Liu X D,Lu K,Zhang Y P,Wang H.Influence of C_3H_8O_3 in the electrolyte on characteristics and corrosion resistance of the micro-arc oxidation coatings formed on AZ91D magnesium alloy surface[J].Applied Surface Science,2009,255(16):7115.

[23] Yerokhin A L,Nie X Y,Leyland A,Matthews A,Dowey S J.Plasma electrolysis for surface engineering[J].Surface and Coatings Technology,1999,122(11):73.

[24] Cao C N.Principles of Electrochemistry of Corrosion[M].Beijing:Chemical Industry Press,2008.122.(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2008.122.)