简介概要

Degradation Characters of La-Mg-Ni-Based Metal Hydride Alloys:Corrosion and Pulverization Behaviors

来源期刊:Acta Metallurgica Sinica2018年第7期

论文作者:Yi-Ming Li Yang-Huan Zhang Hui-Ping Ren

文章页码:723 - 734

摘    要:Degradation behaviors of three typical La-Mg-Ni alloys, La2MgNi9, La1.5Mg0.5Ni7 and La4MgNi19, were studied. La1.5-Mg0.5Ni7 with(La,Mg)2Ni7 as main phase presents better discharge capacity and cycling stability. The three alloys suffer severe pulverization and corrosion after electrochemical cycles, which are considered to be the significant factor attributing to the capacity deterioration. However, the overall corrosion extent of the three cycled alloys aggravates successively,which is inconsistent with the result that La2MgNi9 presented poor cycling stability and also the assumption that alloy with high Mg content is easy to be corroded. The intrinsic anti-corrosion and anti-pulverization characteristics of the three alloys are mainly focused in this work. Immersion corrosion experiments demonstrate that the Mg-rich phases are more easily to be corroded. The corrosion resistance of the three alloys presents an improved trend which is inversely proportional to abundance of the Mg-rich phases. However, the anti-pulverization abilities present an inverse trend, which is closely related to the mechanical property of various phase structures. LaNi5 with the highest hardness is easy to crack, but the soft(La,Mg)Ni2 is more resistant to crack formation and spreading. Thus, the weaker corrosion of La2MgNi9 after electrochemical cycling is attributed to the better intrinsic anti-pulverization capability though the anti-corrosion is poor. As La4MgNi19 possesses excellent corrosion resistance, enhancement of the anti-pulverization ability is urgent for improvement in the cycling stability.

详情信息展示

Degradation Characters of La-Mg-Ni-Based Metal Hydride Alloys:Corrosion and Pulverization Behaviors

Yi-Ming Li,Yang-Huan Zhang,Hui-Ping Ren

Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology

摘 要:Degradation behaviors of three typical La-Mg-Ni alloys, La2MgNi9, La1.5Mg0.5Ni7 and La4MgNi19, were studied. La1.5-Mg0.5Ni7 with(La,Mg)2Ni7 as main phase presents better discharge capacity and cycling stability. The three alloys suffer severe pulverization and corrosion after electrochemical cycles, which are considered to be the significant factor attributing to the capacity deterioration. However, the overall corrosion extent of the three cycled alloys aggravates successively,which is inconsistent with the result that La2MgNi9 presented poor cycling stability and also the assumption that alloy with high Mg content is easy to be corroded. The intrinsic anti-corrosion and anti-pulverization characteristics of the three alloys are mainly focused in this work. Immersion corrosion experiments demonstrate that the Mg-rich phases are more easily to be corroded. The corrosion resistance of the three alloys presents an improved trend which is inversely proportional to abundance of the Mg-rich phases. However, the anti-pulverization abilities present an inverse trend, which is closely related to the mechanical property of various phase structures. LaNi5 with the highest hardness is easy to crack, but the soft(La,Mg)Ni2 is more resistant to crack formation and spreading. Thus, the weaker corrosion of La2MgNi9 after electrochemical cycling is attributed to the better intrinsic anti-pulverization capability though the anti-corrosion is poor. As La4MgNi19 possesses excellent corrosion resistance, enhancement of the anti-pulverization ability is urgent for improvement in the cycling stability.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号