简介概要

Enhanced tensile properties of a reversion annealed 6.5Mn-TRIP alloy via tailoring initial microstructure and cold rolling reduction

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2018年第8期

论文作者:Minghui Cai Hongshou Huang Junhua Su Hua Ding Peter D.Hodgson

文章页码:1428 - 1435

摘    要:The feasibility of improving the overall performance of medium Mn steels was demonstrated via tailoring the initial microstructure and cold rolling reduction.The combined effects of cooling patterns after hot rolling(HR) and cold rolling(CR) reductions show:(1) as the cooling pattern varied from furnace cooling(FC) to oil quenching(OQ),the intercritically annealed microstructure was dramatically refined and the fraction of recrystallized ferrite dropped,regardless of CR reductions.This resulted in both high yield/ultimate tensile strengths(YS/UTS) but low total elongation to fracture(El);(2) as the CR reduction increased from 50% to 75%,the OQ-samples after annealing exhibited a more refined microstructure with relatively higher fractions of retained austenite and sub-structure,leading to higher YS and UTS but lower El; whereas the FC samples appeared to exhibit little difference in overall tensile properties in both cases.The differences in microstructural evolution with cooling patterns and CR reductions were explained by the calculated accumulated effective strain(εAES),which was considered to be related to degrees of recovery and recrystallization of the deformed martensite(α’).The optimal tensile properties of 1 GPa YS and 40 GPa·% UTS×El were achieved in the OQ-50%CR annealed samples at 650?C for 1 h.This was quite beneficial to large-scale production of ultra-high strength steels,owing to its serious springback during heavy cold working.

详情信息展示

Enhanced tensile properties of a reversion annealed 6.5Mn-TRIP alloy via tailoring initial microstructure and cold rolling reduction

Minghui Cai1,Hongshou Huang1,Junhua Su1,Hua Ding1,Peter D.Hodgson2

1. School of Materials Science and Engineering,Northeastern University2. Institute for Frontier Materials,Deakin University

摘 要:The feasibility of improving the overall performance of medium Mn steels was demonstrated via tailoring the initial microstructure and cold rolling reduction.The combined effects of cooling patterns after hot rolling(HR) and cold rolling(CR) reductions show:(1) as the cooling pattern varied from furnace cooling(FC) to oil quenching(OQ),the intercritically annealed microstructure was dramatically refined and the fraction of recrystallized ferrite dropped,regardless of CR reductions.This resulted in both high yield/ultimate tensile strengths(YS/UTS) but low total elongation to fracture(El);(2) as the CR reduction increased from 50% to 75%,the OQ-samples after annealing exhibited a more refined microstructure with relatively higher fractions of retained austenite and sub-structure,leading to higher YS and UTS but lower El; whereas the FC samples appeared to exhibit little difference in overall tensile properties in both cases.The differences in microstructural evolution with cooling patterns and CR reductions were explained by the calculated accumulated effective strain(εAES),which was considered to be related to degrees of recovery and recrystallization of the deformed martensite(α’).The optimal tensile properties of 1 GPa YS and 40 GPa·% UTS×El were achieved in the OQ-50%CR annealed samples at 650?C for 1 h.This was quite beneficial to large-scale production of ultra-high strength steels,owing to its serious springback during heavy cold working.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号