Preparation of nitrogen-doped titania and its photocatalytic activity
来源期刊:Rare Metals2007年第3期
论文作者:QIN Haoli,), GU Guobang), and LIU Song) ) College of Chemistry, South China University of Technology, Guangzhou , China ) School of Science, Guizhou Normal University, Guiyang , China
文章页码:254 - 262
摘 要:Yellowish nitrogen-doped titania was produced through sol-gel method in mild condition, with the elemental ni- trogen derived from aqua ammonia. The titania catalysts were characterized using XRD, BET, TEM, XPS, and UV-Vis diffuse reflectance spectrophotometer, and their photocatalytic activities were evaluated under UV and visible light, respec- tively. The XRD results showed that all titania catalysts were anatase. More significantly, the crystallite size of nitro- gen-doped titania increased with an increase in N/Ti proportion, and the doping of nitrogen could extend the absorption shoulder into the visible-light region, thus it possessed a higher visible-light activity illustrated by decolorization of methyl orange (65.3%) under the irradiation of visible light, whereas pure titania showed little of such kind of visible light activity. The UV-light activity of nitrogen-doped titania catalysts was worse than that of pure titania and Degussa P25. In the range of N/Ti proportion of 4-10 mol%, the activity of nitrogen-doped titania weakened appreciably in the visible-light region as the N/Ti proportion increased, whereas a reverse relationship existed under the irradiation of UV light.
QIN Haoli1,2), GU Guobang1), and LIU Song1) 1) College of Chemistry, South China University of Technology, Guangzhou 510640, China 2) School of Science, Guizhou Normal University, Guiyang 550001, China
摘 要:Yellowish nitrogen-doped titania was produced through sol-gel method in mild condition, with the elemental ni- trogen derived from aqua ammonia. The titania catalysts were characterized using XRD, BET, TEM, XPS, and UV-Vis diffuse reflectance spectrophotometer, and their photocatalytic activities were evaluated under UV and visible light, respec- tively. The XRD results showed that all titania catalysts were anatase. More significantly, the crystallite size of nitro- gen-doped titania increased with an increase in N/Ti proportion, and the doping of nitrogen could extend the absorption shoulder into the visible-light region, thus it possessed a higher visible-light activity illustrated by decolorization of methyl orange (65.3%) under the irradiation of visible light, whereas pure titania showed little of such kind of visible light activity. The UV-light activity of nitrogen-doped titania catalysts was worse than that of pure titania and Degussa P25. In the range of N/Ti proportion of 4-10 mol%, the activity of nitrogen-doped titania weakened appreciably in the visible-light region as the N/Ti proportion increased, whereas a reverse relationship existed under the irradiation of UV light.
关键词: