简介概要

Study on Physical and Chemical Behaviors of Rare Earths in Preparing Ceramic Tube Supported Palladium Film by Electroless Plating

来源期刊:JOURNAL OF RARE EARTHS2006年增刊第2期

论文作者:Peng Jian Jiang Boquan Ye Zhiqiang

Key words:electroless plating; palladium; hydrogen separation; rare earths;

Abstract: The rare earths of ytterbium, lanthanum, praseodymium, neodymium and their binary mixtures were respectively added into the traditional electroless plating solution to prepare thin palladium film on the inner surface of porous ceramic tube. The experimental results shows that the addition of rare earths increases palladium deposition rates and the binary mixtures are superior to the single rare earths and the mixture of ytterbium-lanthanum is the most efficient. Adding the mixture of ytterbium-lanthanum can also reduce the plating temperature by 10~20 ℃, shrink the metal crystal size and improve the film densification compared to those by traditional electroless plating. A thin palladium film with 5 μm was prepared and the film made a highly pure hydrogen with a molar fraction of more than 99.97% from a H2-N2 gas mixture. More attentions were paid to analyze the physical and chemical behaviors of the rare earths in palladium film preparation.

详情信息展示

Study on Physical and Chemical Behaviors of Rare Earths in Preparing Ceramic Tube Supported Palladium Film by Electroless Plating

Peng Jian1,Jiang Boquan1,Ye Zhiqiang1

(1.School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330029, China)

Abstract:The rare earths of ytterbium, lanthanum, praseodymium, neodymium and their binary mixtures were respectively added into the traditional electroless plating solution to prepare thin palladium film on the inner surface of porous ceramic tube. The experimental results shows that the addition of rare earths increases palladium deposition rates and the binary mixtures are superior to the single rare earths and the mixture of ytterbium-lanthanum is the most efficient. Adding the mixture of ytterbium-lanthanum can also reduce the plating temperature by 10~20 ℃, shrink the metal crystal size and improve the film densification compared to those by traditional electroless plating. A thin palladium film with 5 μm was prepared and the film made a highly pure hydrogen with a molar fraction of more than 99.97% from a H2-N2 gas mixture. More attentions were paid to analyze the physical and chemical behaviors of the rare earths in palladium film preparation.

Key words:electroless plating; palladium; hydrogen separation; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号