简介概要

Suspension calcination and alkali leaching of low-grade high-sulfur bauxite:Desulfurization, mineralogical evolution and desilication

来源期刊:International Journal of Minerals Metallurgy and Materials2020年第5期

论文作者:Hong-fei Wu Jun-qi Li Chao-yi Chen Fei-long Xia Zhen-shan Xie

文章页码:602 - 610

摘    要:To enable the utilization of low-grade and high-sulfur bauxite, the suspension calcination was used to remove the sulfur and the activate silica minerals, and the calcinated bauxite was subjected to a desilication process in Na OH solution under atmospheric pressure. The desulfurization and desilication properties and mineralogical evolution were studied by X-ray diffraction, thermogravimetry–differential thermal analysis, scanning electron microscopy, and FactSage methods. The results demonstrate that the suspension calcination method is efficient for sulfur removal: 84.21% of S was removed after calcination at 1000°C for 2 min. During the calcination process, diaspore and pyrite were transferred to α-Al2O3, magnetite, and hematite. The phase transformation of pyrite follows the order FeS2 → Fe3O4 → Fe2O3, and the iron oxides and silica were converted into iron silicate. In the alkali-soluble desilication process, the optimum condition was an alkali solution concentration of 110 g/L, a reaction time of 20 min, and a reaction temperature of 95°C. The corresponding desilication ratio and alumina loss ratio were 44.9% and 2.4%, respectively, and the alumina-to-silica mass ratio of the concentrate was 7.9. The Al2O3·2SiO2, SiO2, and Al2O3 formed during the calcination process could react with Na OH solution, and their activity decreased in the order of Al2O3·2 SiO2, SiO2, and Al2O3.

详情信息展示

Suspension calcination and alkali leaching of low-grade high-sulfur bauxite:Desulfurization, mineralogical evolution and desilication

Hong-fei Wu1,2,Jun-qi Li1,2,Chao-yi Chen1,2,Fei-long Xia1,2,Zhen-shan Xie1,2

1. Department of Metallurgical Engineering, College of Materials and Metallurgy, Guizhou University2. Guizhou Province Key Laboratory of Metallurgical Engineering and Process Energy Saving

摘 要:To enable the utilization of low-grade and high-sulfur bauxite, the suspension calcination was used to remove the sulfur and the activate silica minerals, and the calcinated bauxite was subjected to a desilication process in Na OH solution under atmospheric pressure. The desulfurization and desilication properties and mineralogical evolution were studied by X-ray diffraction, thermogravimetry–differential thermal analysis, scanning electron microscopy, and FactSage methods. The results demonstrate that the suspension calcination method is efficient for sulfur removal: 84.21% of S was removed after calcination at 1000°C for 2 min. During the calcination process, diaspore and pyrite were transferred to α-Al2O3, magnetite, and hematite. The phase transformation of pyrite follows the order FeS2 → Fe3O4 → Fe2O3, and the iron oxides and silica were converted into iron silicate. In the alkali-soluble desilication process, the optimum condition was an alkali solution concentration of 110 g/L, a reaction time of 20 min, and a reaction temperature of 95°C. The corresponding desilication ratio and alumina loss ratio were 44.9% and 2.4%, respectively, and the alumina-to-silica mass ratio of the concentrate was 7.9. The Al2O3·2SiO2, SiO2, and Al2O3 formed during the calcination process could react with Na OH solution, and their activity decreased in the order of Al2O3·2 SiO2, SiO2, and Al2O3.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号