简介概要

Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper:Effects of Microstructure and Axial Stress

来源期刊:Acta Metallurgica Sinica2019年第12期

论文作者:Rong-Hua Li Peng Zhang Zhe-Feng Zhang

文章页码:1521 - 1529

摘    要:The fatigue cracking and fracture behavior of cold-drawn copper subjected to cyclic torsional loading were investigated in this study.It was found that with increasing stress amplitude,the fracture mode of cold-drawn copper gradually changes from a shear fracture on transverse maximum shear stress plane to a mixed shear mode on both transverse and longitudinal shear planes and finally turns to the shear fracture on multiple longitudinal shear planes.Combining the cracking morphology and the relationship between torsional fatigue cracking and the grain boundaries,the fracture mechanism of cold-drawn copper under cyclic torsional loading was analyzed and proposed by considering the effects of the microstructure and axial stress caused by torsion.Because of the promotion of the grain boundary distribution on longitudinal crack propagation and the inhibition of axial stress on transverse crack grown,the tendency of crack propagation along the longitudinal direction increases with increasing stress levels.

详情信息展示

Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper:Effects of Microstructure and Axial Stress

Rong-Hua Li1,Peng Zhang2,Zhe-Feng Zhang2

1. School of Mechanical Engineering,Liaoning Shihua University2. Laboratory of Fatigue and Fracture for Materials,Institute of Metal Research,Chinese Academy of Sciences

摘 要:The fatigue cracking and fracture behavior of cold-drawn copper subjected to cyclic torsional loading were investigated in this study.It was found that with increasing stress amplitude,the fracture mode of cold-drawn copper gradually changes from a shear fracture on transverse maximum shear stress plane to a mixed shear mode on both transverse and longitudinal shear planes and finally turns to the shear fracture on multiple longitudinal shear planes.Combining the cracking morphology and the relationship between torsional fatigue cracking and the grain boundaries,the fracture mechanism of cold-drawn copper under cyclic torsional loading was analyzed and proposed by considering the effects of the microstructure and axial stress caused by torsion.Because of the promotion of the grain boundary distribution on longitudinal crack propagation and the inhibition of axial stress on transverse crack grown,the tendency of crack propagation along the longitudinal direction increases with increasing stress levels.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号