简介概要

Hydro-mechanical modeling of impermeable discontinuity inrock by extended finite element method

来源期刊:中南大学学报(英文版)2015年第11期

论文作者:ZHENG An-xing LUO Xian-qi

文章页码:4337 - 4346

Key words:extended finite element method; crack; hydraulic fracture; fluid flow; coupling model; impermeable discontinuities

Abstract: The extended finite element method (XFEM) is a numerical method for modeling discontinuities within the classical finite element framework. The computation mesh in XFEM is independent of the discontinuities, such that remeshing for moving discontinuities can be overcome. the extended finite element method is presented for hydro-mechanical modeling of impermeable discontinuities in rock. The governing equation of XFEM for hydraulic fracture modeling is derived by the virtual work principle of the fracture problem considering the water pressure on crack surface. The coupling relationship between water pressure gradient on crack surface and fracture opening width is obtained by semi-analytical and semi-numerical method. This method simplifies coupling analysis iteration and improves computational precision. Finally, the efficiency of the proposed method for modeling hydraulic fracture problems is verified by two examples and the advantages of the XFEM for hydraulic fracturing analysis are displayed.

详情信息展示

Hydro-mechanical modeling of impermeable discontinuity inrock by extended finite element method

ZHENG An-xing(郑安兴), LUO Xian-qi(罗先启)

(School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao tong University, Shanghai 200240, China)

Abstract:The extended finite element method (XFEM) is a numerical method for modeling discontinuities within the classical finite element framework. The computation mesh in XFEM is independent of the discontinuities, such that remeshing for moving discontinuities can be overcome. the extended finite element method is presented for hydro-mechanical modeling of impermeable discontinuities in rock. The governing equation of XFEM for hydraulic fracture modeling is derived by the virtual work principle of the fracture problem considering the water pressure on crack surface. The coupling relationship between water pressure gradient on crack surface and fracture opening width is obtained by semi-analytical and semi-numerical method. This method simplifies coupling analysis iteration and improves computational precision. Finally, the efficiency of the proposed method for modeling hydraulic fracture problems is verified by two examples and the advantages of the XFEM for hydraulic fracturing analysis are displayed.

Key words:extended finite element method; crack; hydraulic fracture; fluid flow; coupling model; impermeable discontinuities

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号