简介概要

Superplastic behavior of an ultrafine-grained Mg-13Zn-1.55Y alloy with a high volume fraction of icosahedral phases prepared by high-ratio differential speed rolling

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第9期

论文作者:T.Y.Kwak W.J.Kim

文章页码:919 - 925

摘    要:An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg3Zn6Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) on the cast microstructure following homogenization. The alloy exhibited excellent superplasticity at low temperatures(tensile elongations of 455% and 1021% 473 K-10-3s-1 and 523 K-10-3s-1,respectively). Compared with UFG Mg-9.25Zn-1.66 Y alloy(ZW92) with a lower volume fraction of I-phase particles(4.1%), which was prepared using the same processing routes, the UFG ZW132 alloy exhibited a higher thermal stability of grain size. Rapid grain coarsening, however, occurred at temperatures beyond523 K, leading to a loss of superplasticity. The high-temperature deformation behavior of the HRDSRprocessed ZW132 alloy could be well described assuming that the mechanisms of grain boundary sliding and dislocation climb creep competed with each other and considering that the grain-size was largely increased by accelerated grain growth at the temperatures beyond 523 K.

详情信息展示

Superplastic behavior of an ultrafine-grained Mg-13Zn-1.55Y alloy with a high volume fraction of icosahedral phases prepared by high-ratio differential speed rolling

T.Y.Kwak1,2,W.J.Kim2

1. Rare Metal R&BD Group,Korea Institute of Industrial Technology2. Department of Materials Science and Engineering,Hongik University

摘 要:An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg3Zn6Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) on the cast microstructure following homogenization. The alloy exhibited excellent superplasticity at low temperatures(tensile elongations of 455% and 1021% 473 K-10-3s-1 and 523 K-10-3s-1,respectively). Compared with UFG Mg-9.25Zn-1.66 Y alloy(ZW92) with a lower volume fraction of I-phase particles(4.1%), which was prepared using the same processing routes, the UFG ZW132 alloy exhibited a higher thermal stability of grain size. Rapid grain coarsening, however, occurred at temperatures beyond523 K, leading to a loss of superplasticity. The high-temperature deformation behavior of the HRDSRprocessed ZW132 alloy could be well described assuming that the mechanisms of grain boundary sliding and dislocation climb creep competed with each other and considering that the grain-size was largely increased by accelerated grain growth at the temperatures beyond 523 K.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号