简介概要

The Stamping Formability of AZ31 Magnesium Alloy Sheet Improved by Equal-channel Angular Pressing

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2010年第2期

论文作者:刘英

文章页码:234 - 237

摘    要:Equal channel angular pressing (ECAP) processing and annealing were applied to the AZ31 magnesium alloy sheets to evaluate the potential improvement in the mechanical properties and formability. The ECAP experiment was conducted at 300 ℃ in a die having an included angle of 90o between two channels by the BCZ route with the sheets rotated by 90°about the normal axis of plate plane. The tensile tests and conical cup tests were conducted at various temperatures from 20 to 250 ℃. The experimental results indicated that improving the working temperatures could lead to the soft in the material and the enhancement of ductility. Comparatively, the ECAPed AZ31 alloy sheets showed the lower yield strength and smaller conical cup value (CCV) than the unECAPed counterpart in the room temperature. The difference in yield strength between them became small in the elevated temperature, but the ECAPed samples still had the smaller CCV value, implying the improved formability. The texture of the AZ31 alloy sheets could be modified by ECAP and the decrease in the yield strength and more uniform deformation realized in the material, so the formability of AZ31 alloy sheets was improved.

详情信息展示

The Stamping Formability of AZ31 Magnesium Alloy Sheet Improved by Equal-channel Angular Pressing

刘英

Department of Material Science and Engineering, Jinan University

摘 要:Equal channel angular pressing (ECAP) processing and annealing were applied to the AZ31 magnesium alloy sheets to evaluate the potential improvement in the mechanical properties and formability. The ECAP experiment was conducted at 300 ℃ in a die having an included angle of 90o between two channels by the BCZ route with the sheets rotated by 90°about the normal axis of plate plane. The tensile tests and conical cup tests were conducted at various temperatures from 20 to 250 ℃. The experimental results indicated that improving the working temperatures could lead to the soft in the material and the enhancement of ductility. Comparatively, the ECAPed AZ31 alloy sheets showed the lower yield strength and smaller conical cup value (CCV) than the unECAPed counterpart in the room temperature. The difference in yield strength between them became small in the elevated temperature, but the ECAPed samples still had the smaller CCV value, implying the improved formability. The texture of the AZ31 alloy sheets could be modified by ECAP and the decrease in the yield strength and more uniform deformation realized in the material, so the formability of AZ31 alloy sheets was improved.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号