球形颗粒垂直管水力提升压力波动特性检测

来源期刊:中南大学学报(自然科学版)2019年第3期

论文作者:孙志强 关海荣

文章页码:719 - 726

关键词:水力提升;垂直管;球形颗粒;压力波动;时频熵

Key words:hydraulic lifting; vertical pipe; spherical particles; pressure fluctuation; time-frequency entropy

摘    要:为了揭示水力提升过程中颗粒运动诱发的压力波动,开展以水为循环工质、圆形玻璃珠为颗粒的垂直管水力提升实验,利用多路压力变送器测量实验段不同位置的压力信号,利用高速摄影仪对透明实验段内颗粒运动进行直接观测,结合差压信号互相关系数及颗粒运动图像确定代表性压力信号,运用统计分析和快速傅里叶变换进行信号处理,提取差压均值pv、差压平均幅值Av、主峰频率fp、频率主峰幅值Afp和时频熵S等时频域特征参数。研究结果表明:距基准面向上0.5倍管道内径处的取压孔能够更加准确、灵敏地检测到颗粒流的特性;差压均值等时频域特征参数与管道内压力波动之间未呈现出明显的规律性;以AvS和Afp/S这2个组合参数为基础建立的实验关联式的相关系数分别高达0.982和0.952,拟合值与实验值的相对误差分别为0.36%~1.68%和1.05%~5.02%。

Abstract: In order to reveal the pressure fluctuation induced by particle movement in hydraulic lifting processes, experiments were carried out in a vertical pipe with water as circulating working medium and circular glass beads as particles. The pressure signals at different positions in the experimental section were measured by several pressure transmitters, and the particle motion in the transparent experimental section was observed directly with high speed photographer. The representative pressure signal was determined by analyzing the correlation coefficients of the differential pressure signals and the particle motion images. Using statistical analysis and fast Fourier transform, the average differential pressure pv, average amplitude of differential pressure Av, peak frequency fp, peak frequency amplitude Afp and time-frequency entropy S were extracted. The results show that the characteristics of the particle flow can be detected more accurately and sensitively by the pressure port at 0.5 times of the inner diameter of the pipe. There is no obvious regularity between the characteristic parameters extracted and the pressure fluctuation in the pipe. The experimental correlations based on AvS and Afp/S have the correlation coefficients up to 0.982 and 0.952, and the relative errors between the fitting value and the experimental value are 0.36%-1.68% and 1.05%-5.02%, respectively.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号