简介概要

煤与瓦斯突出的L-Isomap-KELM模型

来源期刊:控制工程2020年第10期

论文作者:谢国民 黄睿灵 刘明 屠乃威

文章页码:1802 - 1806

关键词:煤与瓦斯突出;地标等距映射;核极端学习机;极端学习机;

摘    要:煤与瓦斯突出预测是一个复杂多因素的、非线性的高维问题,传统的预测方法存在预测精度不高,预测速度慢等不足。针对上述问题,提出了将地标等距特征映射(Landmarks Isometric Mapping,L-Isomap)理论与核极端学习机(Kernel Extreme Learning Machine,KELM)相结合应用到煤与瓦斯突出预测中的新方法。首先,采用L-Isomap进行非线性降维,完成特征提取;然后,用KELM来融合煤与瓦斯突出风险与致突因素组成的特征向量之间的非线性关系,建立煤与瓦斯突出预测的L-Isomap-KELM模型,并将其与极端学习机(ELM)预测模型相比。仿真结果表明:L-Isomap-KELM预测模型能够达到97.31%的准确率,并且运算速度快,还具有很好的泛化能力。

详情信息展示

煤与瓦斯突出的L-Isomap-KELM模型

谢国民1,黄睿灵1,2,刘明3,屠乃威1

1. 辽宁工程技术大学电气与控制工程学院2. 国网重庆市电力公司电力科学研究院3. 朝阳师范高等专科学校计数系

摘 要:煤与瓦斯突出预测是一个复杂多因素的、非线性的高维问题,传统的预测方法存在预测精度不高,预测速度慢等不足。针对上述问题,提出了将地标等距特征映射(Landmarks Isometric Mapping,L-Isomap)理论与核极端学习机(Kernel Extreme Learning Machine,KELM)相结合应用到煤与瓦斯突出预测中的新方法。首先,采用L-Isomap进行非线性降维,完成特征提取;然后,用KELM来融合煤与瓦斯突出风险与致突因素组成的特征向量之间的非线性关系,建立煤与瓦斯突出预测的L-Isomap-KELM模型,并将其与极端学习机(ELM)预测模型相比。仿真结果表明:L-Isomap-KELM预测模型能够达到97.31%的准确率,并且运算速度快,还具有很好的泛化能力。

关键词:煤与瓦斯突出;地标等距映射;核极端学习机;极端学习机;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号