基于神经网络集成的挥发分近红外回归模型
来源期刊:中国矿业大学学报2013年第2期
论文作者:雷萌 李明 吴楠 董亮
文章页码:291 - 295
关键词:挥发分回归模型;神经网络;集成学习;参数优化;
摘 要:针对煤炭光谱特征信息分散的现象,提出了基于神经网络集成的挥发分近红外回归模型.该模型引入集成学习的思想,综合SOM,RBF,BP和Elman神经网络学习算法的优势,通过求各子模型的输出均值获得最终的预测结果.为了减小因算法参数设置不当而引起的学习误差,根据各网络算法的特点,利用经验知识、交叉验证和遗传算法优化模型参数.研究结果表明:经相同算法优化后,集成学习模型的性能明显优于单一神经网络,其最大误差小于3%,比单一神经网络小1~2倍.该方法有效地提高了模型的学习精确度,且具有较好的泛化性,适用于复杂多变的非线性煤质近红外回归问题.
雷萌1,李明1,吴楠2,董亮1
1. 中国矿业大学信息与电气工程学院2. 河北出入境检验检疫局京唐港办事处
摘 要:针对煤炭光谱特征信息分散的现象,提出了基于神经网络集成的挥发分近红外回归模型.该模型引入集成学习的思想,综合SOM,RBF,BP和Elman神经网络学习算法的优势,通过求各子模型的输出均值获得最终的预测结果.为了减小因算法参数设置不当而引起的学习误差,根据各网络算法的特点,利用经验知识、交叉验证和遗传算法优化模型参数.研究结果表明:经相同算法优化后,集成学习模型的性能明显优于单一神经网络,其最大误差小于3%,比单一神经网络小1~2倍.该方法有效地提高了模型的学习精确度,且具有较好的泛化性,适用于复杂多变的非线性煤质近红外回归问题.
关键词:挥发分回归模型;神经网络;集成学习;参数优化;