基于APSO–WLS–SVM的含瓦斯煤渗透率预测模型
来源期刊:煤田地质与勘探2019年第2期
论文作者:毛志勇 黄春娟 路世昌 韩榕月
文章页码:66 - 149
关键词:含瓦斯煤;渗透率;自适应粒子群算法(APSO);加权最小二乘法支持向量机(WLS–SVM);
摘 要:为了较准确预测含瓦斯煤渗透率,有效预防瓦斯安全事故,提出自适应粒子群算法(APSO)优化的加权最小二乘法支持向量机(WLS–SVM)算法。根据对含瓦斯煤渗透率的相关理论及文献研究分析,选取有效应力、瓦斯压力、温度和抗压强度作为主要特征指标,采用APSO算法对WLS–SVM模型的组合参数(C、σ)寻优,建立APSO–WLS–SVM含瓦斯煤渗透率预测模型。结合现场实测资料中的40组数据作为训练样本,其余10组为预测样本,对该模型进行训练与检验,并将其预测结果与利用PSO–WLS–SVM和WLS–SVM模型的预测结果进行对比。结果表明:APSO-WLS-SVM模型的预测效果优于另外2个模型,提高了煤体渗透率的预测性能与泛化能力。
毛志勇,黄春娟,路世昌,韩榕月
辽宁工程技术大学系统工程研究所
摘 要:为了较准确预测含瓦斯煤渗透率,有效预防瓦斯安全事故,提出自适应粒子群算法(APSO)优化的加权最小二乘法支持向量机(WLS–SVM)算法。根据对含瓦斯煤渗透率的相关理论及文献研究分析,选取有效应力、瓦斯压力、温度和抗压强度作为主要特征指标,采用APSO算法对WLS–SVM模型的组合参数(C、σ)寻优,建立APSO–WLS–SVM含瓦斯煤渗透率预测模型。结合现场实测资料中的40组数据作为训练样本,其余10组为预测样本,对该模型进行训练与检验,并将其预测结果与利用PSO–WLS–SVM和WLS–SVM模型的预测结果进行对比。结果表明:APSO-WLS-SVM模型的预测效果优于另外2个模型,提高了煤体渗透率的预测性能与泛化能力。
关键词:含瓦斯煤;渗透率;自适应粒子群算法(APSO);加权最小二乘法支持向量机(WLS–SVM);