化学涂层对玻璃表面与微颗粒耦合规律的影响

来源期刊:中国有色金属学报(英文版)2012年第11期

论文作者:李 明 吴 超 刘一静 闫 晖

文章页码:2799 - 2805

关键词:微颗粒;粘附;玻璃表面;试剂涂层;粒径分布

Key words:micro-particles; adhesion; glass surface; reagent film; size distribution

摘    要:通过玻璃表面的试剂涂层与空气中微颗粒的耦合性实验发现,试剂涂层能明显改变表面与微颗粒的耦合能力,微颗粒平均粒径与采样的时间间隔、放置夹角和试剂浓度没有明显规律性联系,复合试剂耦合微颗粒的粒径比单一试剂的粒径小(2~3 μm),其中吐温60粘附微颗粒的粒径最大(4~5 μm),0.5%SDBS与0.5%氟碳复合试剂涂层表面粘附微颗粒数量的能力最强。每种试剂对微颗粒的粘附强度存在一个最佳范围。研究发现,复合试剂能获得单一试剂不具备的特殊物理化学性质,能有效改变固体表面与微颗粒的耦合性质。

Abstract: The experiments were conducted to investigate the behavior of airborne particles adhering to the glass slides which were coated by several reagent films. The results showed that the adhesion level could be significantly changed by the reagent films. There were no evident rules between the average size of particles and sampling time interval, the placing angle and reagent concentration. The average particle size on the surface coated by composite reagent (2-3 μm) was smaller than that on the single reagent coated surface, while the largest particle size (4-5 μm) was observed on the surface coated with the Tween 60. The experiment also demonstrated that the best adhesive performance was obtained on the surface which was coated with 0.5% SDBS and 0.5% fluorocarbon composite reagents. The experiment results indicated that each reagent had a certain optimum adhesive range to the particle. The composite reagents with different proportion of single reagents exhibited some particular physical and chemical properties, which could effectively change the adhesive performance between the solid surface and the particles.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号