基于广义回归神经网络的金属矿山水害危险性预测
来源期刊:黄金2017年第7期
论文作者:魏诚 刘子栋 王永恩 张华
文章页码:63 - 66
关键词:广义回归神经网络;金属矿山;水害危险性预测;样本;光滑因子;
摘 要:水害是金属矿山重大灾害之一,正确预测水害危险性及变化趋势,对矿山安全生产具有重要的指导意义。在分析水害影响因素和广泛参考其他预测模型的基础上,以矿山地质构造、裂隙发育状况、降水量、采空区面积、地下水水位、回采工艺、开采深度、有无预注浆、含水层层数、围岩岩性等10个影响因素作为预测输入,以有水害危险、无水害危险作为预测输出,建立了GRNN预测模型,并应用MATLAB软件编程,对某金属矿山样本进行了训练和预测。研究结果表明,预测结果最大误差仅为7.62%。GRNN模型预测精度高,对金属矿山水害危险性预测和防治具有借鉴意义。
魏诚1,刘子栋2,王永恩1,张华1
1. 河北省国控矿业开发投资有限公司2. 河北建投铁路有限公司
摘 要:水害是金属矿山重大灾害之一,正确预测水害危险性及变化趋势,对矿山安全生产具有重要的指导意义。在分析水害影响因素和广泛参考其他预测模型的基础上,以矿山地质构造、裂隙发育状况、降水量、采空区面积、地下水水位、回采工艺、开采深度、有无预注浆、含水层层数、围岩岩性等10个影响因素作为预测输入,以有水害危险、无水害危险作为预测输出,建立了GRNN预测模型,并应用MATLAB软件编程,对某金属矿山样本进行了训练和预测。研究结果表明,预测结果最大误差仅为7.62%。GRNN模型预测精度高,对金属矿山水害危险性预测和防治具有借鉴意义。
关键词:广义回归神经网络;金属矿山;水害危险性预测;样本;光滑因子;