简介概要

Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第24期

论文作者:Ruishan Xie Qingyu Shi Gaoqiang Chen

摘    要:In additive manufacturing(AM), numerous thermal cycles make stress relaxation a significant factor in affecting the material mechanical response. However, the traditional material constitutive model cannot describe repeated annealing behavior. Here, we propose an improved constitutive model based on a serial of stress relaxation experiments, which can descript the temperature and time-dependent stress relaxation behavior during AM. By using the proposed relaxation model, the prediction accuracy is significantly improved due to the recovery of inelastic strain during multilayer deposition. The results are validated by both in-situ and final distortion measurements. The influence mechanism of the relaxation behavior on material mechanical response is explained by the three-bar model in thermo-elastic-plastic theory. The relaxation behavior during the whole AM process is clarified. The stress behavior is found to have a limited effect when merely depositing several layers; nevertheless, it becomes a prominent impact when depositing multiple layers. The proposed model can enhance modeling accuracy both in AM and in multilayer welding.

详情信息展示

Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model

Ruishan Xie1,2,Qingyu Shi1,2,Gaoqiang Chen1,2

1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University2. Key Laboratory for Advanced Material Processing Technology, Ministry of Education

摘 要:In additive manufacturing(AM), numerous thermal cycles make stress relaxation a significant factor in affecting the material mechanical response. However, the traditional material constitutive model cannot describe repeated annealing behavior. Here, we propose an improved constitutive model based on a serial of stress relaxation experiments, which can descript the temperature and time-dependent stress relaxation behavior during AM. By using the proposed relaxation model, the prediction accuracy is significantly improved due to the recovery of inelastic strain during multilayer deposition. The results are validated by both in-situ and final distortion measurements. The influence mechanism of the relaxation behavior on material mechanical response is explained by the three-bar model in thermo-elastic-plastic theory. The relaxation behavior during the whole AM process is clarified. The stress behavior is found to have a limited effect when merely depositing several layers; nevertheless, it becomes a prominent impact when depositing multiple layers. The proposed model can enhance modeling accuracy both in AM and in multilayer welding.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号