简介概要

结合注意力机制的循环神经网络复述识别模型

来源期刊:控制与决策2021年第1期

论文作者:李旭 姚春龙 范丰龙 于晓强

关键词:自然语言处理;复述识别;循环神经网络;双向长短时记忆;注意力机制;无监督预训练;

摘    要:传统基于深度学习的复述识别模型通常以关注文本表示为核心,忽略了对多粒度交互特征的挖掘与匹配.为此,建模文本交互空间,分别利用双向长短时记忆网络对两个候选复述句按条件编码,基于迭代隐状态的输出,通过逐词软对齐的方式从词、短语、句子等多个粒度层次推理并获取句子对的语义表示,最后综合不同视角的语义表达利用softmax实现二元分类.为解决复述标注训练语料不足,在超过580 000句子对的数据集上利用语言建模任务对模型参数无监督预训练,再使用预训练好的参数在标准数据集上有监督微调.与先前最佳的神经网络模型相比,所提出模型在标准数据集MSRP上准确率提高2.96%, F1值改善2%.所提出模型综合文本全局和局部匹配信息,多粒度、多视角地描述文本交互匹配模式,能够降低对人工特征工程的需求,具有良好的实用性.

详情信息展示

结合注意力机制的循环神经网络复述识别模型

李旭,姚春龙,范丰龙,于晓强

大连工业大学信息科学与工程学院

摘 要:传统基于深度学习的复述识别模型通常以关注文本表示为核心,忽略了对多粒度交互特征的挖掘与匹配.为此,建模文本交互空间,分别利用双向长短时记忆网络对两个候选复述句按条件编码,基于迭代隐状态的输出,通过逐词软对齐的方式从词、短语、句子等多个粒度层次推理并获取句子对的语义表示,最后综合不同视角的语义表达利用softmax实现二元分类.为解决复述标注训练语料不足,在超过580 000句子对的数据集上利用语言建模任务对模型参数无监督预训练,再使用预训练好的参数在标准数据集上有监督微调.与先前最佳的神经网络模型相比,所提出模型在标准数据集MSRP上准确率提高2.96%, F1值改善2%.所提出模型综合文本全局和局部匹配信息,多粒度、多视角地描述文本交互匹配模式,能够降低对人工特征工程的需求,具有良好的实用性.

关键词:自然语言处理;复述识别;循环神经网络;双向长短时记忆;注意力机制;无监督预训练;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号