基于向量角分解的高维多目标进化算法
来源期刊:控制与决策2021年第3期
论文作者:赵玉亮 宋业新
文章页码:761 - 768
关键词:高维多目标进化;向量角;成绩标量函数;动态分解;精英选择策略;
摘 要:选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题,提出一种基于向量角分解的高维多目标进化算法.首先,将个体本身作为参考向量,利用目标向量之间的夹角作为个体的相似度测度估计种群分布性,以减轻算法预先指定权重向量的负担;然后,利用成绩标量函数作为个体的收敛性测度,该收敛测度在引导种群走向Pareto最优前沿方面发挥着重要作用;最后,提出一种基于向量角分解的精英选择策略,其在环境选择过程中利用向量角信息将目标空间动态分解,并利用成绩标量函数从分布性较好的区域中挑选较好的个体进入下一代,能够动态地平衡种群的收敛性和分布性.对比实验结果表明,所提出算法具有较强的竞争力,其在保持种群分布性的同时具有足够的选择压力,能够有效地引导高维目标空间的搜索.
赵玉亮1,宋业新1
1. 海军工程大学基础部
摘 要:选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题,提出一种基于向量角分解的高维多目标进化算法.首先,将个体本身作为参考向量,利用目标向量之间的夹角作为个体的相似度测度估计种群分布性,以减轻算法预先指定权重向量的负担;然后,利用成绩标量函数作为个体的收敛性测度,该收敛测度在引导种群走向Pareto最优前沿方面发挥着重要作用;最后,提出一种基于向量角分解的精英选择策略,其在环境选择过程中利用向量角信息将目标空间动态分解,并利用成绩标量函数从分布性较好的区域中挑选较好的个体进入下一代,能够动态地平衡种群的收敛性和分布性.对比实验结果表明,所提出算法具有较强的竞争力,其在保持种群分布性的同时具有足够的选择压力,能够有效地引导高维目标空间的搜索.
关键词:高维多目标进化;向量角;成绩标量函数;动态分解;精英选择策略;