Unique structural and magnetic traits of Nd3+-substituted Co-Zn nanoferrites
来源期刊:JOURNAL OF RARE EARTHS2019年第10期
论文作者:M.A.Almessiere
文章页码:1108 - 1115
摘 要:Because of the technological potential of magnetic spinel nanoferrites, we prepared neodymium ion(Nd3+)-substituted cobalt-zinc ferrites(CZFs) with the form Co0.5 Zn0.5 NdxFe2 exO4(0.03≤x≤0.05) via a hydrothermal method. The as-prepared samples were thoroughly characterized using various analytical techniques. XRD, FTIR and FESEM analyses confirm the formation of a cubic spinel phase of the CZFNPs(CZF nanoparticles). A decrease in the lattice parameter due to the substitution of Fe3+by Nd3+in the lattice structures is manifested in the XRD refinement data. The magnetic properties of the proposed CZFNPs were evaluated in terms of the saturation magnetization, remanence, coercivity, squareness ratio and magnetic moment. These CZFNPs exhibit superparamagnetic behaviors at room temperature.Moreover, the Nd3+inclusion does not significantly affect the measured magnetizations and coercivities of the CZFNPs. Samples containing 0.01 and 0.03 Nd3+exhibit lower saturation magnetizations than that of the pristine product. The squareness ratios much less than 0.53 are ascribed to surface spin disordering. The unique magnetic traits of the synthesized CZFNPs are primarily attributed to the substitution of Fe3+ions, with smaller ionic radii, by Nd3+ions, with larger ionic radii. The proposed CZFNPs may be useful for diverse magneto-optic applications.
M.A.Almessiere
摘 要:Because of the technological potential of magnetic spinel nanoferrites, we prepared neodymium ion(Nd3+)-substituted cobalt-zinc ferrites(CZFs) with the form Co0.5 Zn0.5 NdxFe2 exO4(0.03≤x≤0.05) via a hydrothermal method. The as-prepared samples were thoroughly characterized using various analytical techniques. XRD, FTIR and FESEM analyses confirm the formation of a cubic spinel phase of the CZFNPs(CZF nanoparticles). A decrease in the lattice parameter due to the substitution of Fe3+by Nd3+in the lattice structures is manifested in the XRD refinement data. The magnetic properties of the proposed CZFNPs were evaluated in terms of the saturation magnetization, remanence, coercivity, squareness ratio and magnetic moment. These CZFNPs exhibit superparamagnetic behaviors at room temperature.Moreover, the Nd3+inclusion does not significantly affect the measured magnetizations and coercivities of the CZFNPs. Samples containing 0.01 and 0.03 Nd3+exhibit lower saturation magnetizations than that of the pristine product. The squareness ratios much less than 0.53 are ascribed to surface spin disordering. The unique magnetic traits of the synthesized CZFNPs are primarily attributed to the substitution of Fe3+ions, with smaller ionic radii, by Nd3+ions, with larger ionic radii. The proposed CZFNPs may be useful for diverse magneto-optic applications.
关键词: