简介概要

A Lyapunov-based three-axis attitude intelligent control approach for unmanned aerial vehicle

来源期刊:中南大学学报(英文版)2015年第12期

论文作者:A.H. Mazinan

文章页码:4669 - 4678

Key words:Lyapunov based control approach; PD based LQR approach; control allocation scheme; kinematics and dynamics; unmanned aerial vehicle system; on-off thrusters; PWPF modulator

Abstract: A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems. There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art. The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches, as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control. And the corresponding rotation angles are dealt with in the outer closed loop control. It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator (PD based LQR) approach under optimum coefficients, while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances. In order to complete the inner closed loop control, there is a pulse-width pulse-frequency (PWPF) modulator to be able to handle on-off thrusters. Furthermore, the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system, where the control allocation scheme is realized in the proposed strategy. It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results. At the end, the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.

详情信息展示

A Lyapunov-based three-axis attitude intelligent control approach for unmanned aerial vehicle

A.H. Mazinan

(Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch,
Islamic Azad University (IAU), No. 209, North Iranshahr St., P.O. Box 11365/4435, Tehran, Iran)

Abstract:A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems. There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art. The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches, as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control. And the corresponding rotation angles are dealt with in the outer closed loop control. It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator (PD based LQR) approach under optimum coefficients, while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances. In order to complete the inner closed loop control, there is a pulse-width pulse-frequency (PWPF) modulator to be able to handle on-off thrusters. Furthermore, the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system, where the control allocation scheme is realized in the proposed strategy. It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results. At the end, the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.

Key words:Lyapunov based control approach; PD based LQR approach; control allocation scheme; kinematics and dynamics; unmanned aerial vehicle system; on-off thrusters; PWPF modulator

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号