简介概要

Effect of Polymer-based Grinding Aid on Sulfate Attacking Resistance of Concrete

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2017年第5期

论文作者:张太龙 HU Jingchao 高建明 SUN Wei

文章页码:1095 - 1100

摘    要:Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca element contents of concrete specimens were measured. Scanning electron microscopy(SEM), mercury intrusion porosimetry(MIP), and X-ray diffractometry(XRD) were used to investigate the changing of microstructure of interior concrete. The results indicated that PGA was capable of reducing the mass loss and improving the sulfate attack resistance of concrete. X-ray fluorescence(XRF) analysis revealed that PGA delayed the transport process of sulfate ions and Ca ions. In addition, MIP analysis disclosed that the micropores of concrete with PGA increased in the fraction of 20-100 nm and decreased in the residues of 200 nm. Compared with the blank sample, concrete with PGA had more slender and well-organized hydration products, and no changes in hydration products ratio or type were observed.

详情信息展示

Effect of Polymer-based Grinding Aid on Sulfate Attacking Resistance of Concrete

张太龙1,2,HU Jingchao1,2,高建明1,2,SUN Wei1,2

1. Department of Material Science and Engineering, Southeast University2. Jiangsu Key Laboratory of Construction Materials, Southeast University

摘 要:Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca element contents of concrete specimens were measured. Scanning electron microscopy(SEM), mercury intrusion porosimetry(MIP), and X-ray diffractometry(XRD) were used to investigate the changing of microstructure of interior concrete. The results indicated that PGA was capable of reducing the mass loss and improving the sulfate attack resistance of concrete. X-ray fluorescence(XRF) analysis revealed that PGA delayed the transport process of sulfate ions and Ca ions. In addition, MIP analysis disclosed that the micropores of concrete with PGA increased in the fraction of 20-100 nm and decreased in the residues of 200 nm. Compared with the blank sample, concrete with PGA had more slender and well-organized hydration products, and no changes in hydration products ratio or type were observed.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号