简介概要

Microstructural Features and Properties of High-hardness and Heat-resistant Dispersion Strengthened Copper by Reaction Milling

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2011年第5期

论文作者:燕鹏 林晨光

文章页码:902 - 907

摘    要:The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-art to fabrication of them was the internal oxidation (IO) process.In this paper,alumina dispersion strengthened copper (ADSC) powders of nominal composition of Cu-2.5 vol%Al2O3 were produced by reaction milling (RM) process which was an in-situ gas-solid reaction process.The bulk ADSC alloys for electrical and mechanical properties investigation were obtained by sintering and thereafter hot extrusion.After the hot consolidation processes,the fully densified powder compacts can be obtained.The single γ-Al2O3 phase and profile broaden effects are evident in accordance with the results of X-ray diffraction (XRD);the HRB hardness of the ADSC can be as high as 95;the outcomes should be attributed to the pinning effect of nano γ-Al2O3 on dislocations and grain boundaries in the copper matrix.The electrical conductivity of the ADSC alloy is 55%IACS (International Annealing Copper Standard).The room temperature hardness of the hot consolidated material was approximately maintained after annealing for 1 h at 900 ℃ in hydrogen atmosphere.In terms of the above merits,the RM process to fabricating ADSC alloys is a promising method to improve heat resistance,hardness,electrical conductivity and wear resistance properties etc.

详情信息展示

Microstructural Features and Properties of High-hardness and Heat-resistant Dispersion Strengthened Copper by Reaction Milling

燕鹏,林晨光

Powder Metallurgy and Special Materials Research Department,General Research Institute for Nonferrous Metals

摘 要:The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-art to fabrication of them was the internal oxidation (IO) process.In this paper,alumina dispersion strengthened copper (ADSC) powders of nominal composition of Cu-2.5 vol%Al2O3 were produced by reaction milling (RM) process which was an in-situ gas-solid reaction process.The bulk ADSC alloys for electrical and mechanical properties investigation were obtained by sintering and thereafter hot extrusion.After the hot consolidation processes,the fully densified powder compacts can be obtained.The single γ-Al2O3 phase and profile broaden effects are evident in accordance with the results of X-ray diffraction (XRD);the HRB hardness of the ADSC can be as high as 95;the outcomes should be attributed to the pinning effect of nano γ-Al2O3 on dislocations and grain boundaries in the copper matrix.The electrical conductivity of the ADSC alloy is 55%IACS (International Annealing Copper Standard).The room temperature hardness of the hot consolidated material was approximately maintained after annealing for 1 h at 900 ℃ in hydrogen atmosphere.In terms of the above merits,the RM process to fabricating ADSC alloys is a promising method to improve heat resistance,hardness,electrical conductivity and wear resistance properties etc.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号