基于遗传算法的灰色神经网络优化算法
来源期刊:控制工程2013年第5期
论文作者:李国勇 闫芳
文章页码:934 - 937
关键词:神经网络;遗传算法;灰色模型;
摘 要:针对BP神经网络算法通常具有收敛速度慢且容易陷入局部极小值的缺点,在对国内空调订单市场进行分析和研究的基础上,提出一种用遗传算法优化灰色神经网络模型参数的方法,该方法利用灰色模型(Grey Model,GM)弱化数据的随机性以及神经网络的高度非线性,对空调订单建立了一种非线性预测模型,并采用遗传算法对其进行优化,从而提高了预测的精度并加快了收敛程度。仿真结果表明该算法能较好的解决空调订单预测的问题并可推广到同类预测中。
李国勇1,闫芳1
1. 太原理工大学信息工程学院
摘 要:针对BP神经网络算法通常具有收敛速度慢且容易陷入局部极小值的缺点,在对国内空调订单市场进行分析和研究的基础上,提出一种用遗传算法优化灰色神经网络模型参数的方法,该方法利用灰色模型(Grey Model,GM)弱化数据的随机性以及神经网络的高度非线性,对空调订单建立了一种非线性预测模型,并采用遗传算法对其进行优化,从而提高了预测的精度并加快了收敛程度。仿真结果表明该算法能较好的解决空调订单预测的问题并可推广到同类预测中。
关键词:神经网络;遗传算法;灰色模型;