简介概要

基于GA-BP神经网络的镁合金微弧氧化膜层厚度预测

来源期刊:兵器材料科学与工程2017年第1期

论文作者:杨武 张春燕 马超

文章页码:88 - 92

关键词:镁合金;微弧氧化;反向传播神经网络;遗传算法;膜层厚度;

摘    要:为直观地检验膜层的质量,建立微弧氧化工艺参数(电流大小、脉冲宽度、氧化时间)与微弧氧化膜层厚度之间的反向传播(BP)神经网络预测模型,其结构为3-10-1(即3个输入神经元,10个隐含层节点,1个输出神经元)。采用遗传算法(GA)优化BP神经网络的初始权值和阈值,构建基于遗传算法神经网络的膜厚预测模型。用GA-BP神经网络对膜厚进行模型仿真,并将仿真结果与BP神经网络模型仿真结果进行对比。结果表明,GA-BP网络模型预测值的平均误差为1.65%,最大误差为9.75%,而BP模型预测结果的平均误差为8.62%,最大误差为13.68%。GA-BP神经网络模型预测精度要优于BP神经网络模型。

详情信息展示

基于GA-BP神经网络的镁合金微弧氧化膜层厚度预测

杨武,张春燕,马超

江苏科技大学机械工程学院

摘 要:为直观地检验膜层的质量,建立微弧氧化工艺参数(电流大小、脉冲宽度、氧化时间)与微弧氧化膜层厚度之间的反向传播(BP)神经网络预测模型,其结构为3-10-1(即3个输入神经元,10个隐含层节点,1个输出神经元)。采用遗传算法(GA)优化BP神经网络的初始权值和阈值,构建基于遗传算法神经网络的膜厚预测模型。用GA-BP神经网络对膜厚进行模型仿真,并将仿真结果与BP神经网络模型仿真结果进行对比。结果表明,GA-BP网络模型预测值的平均误差为1.65%,最大误差为9.75%,而BP模型预测结果的平均误差为8.62%,最大误差为13.68%。GA-BP神经网络模型预测精度要优于BP神经网络模型。

关键词:镁合金;微弧氧化;反向传播神经网络;遗传算法;膜层厚度;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号