简介概要

Design Optimization of Pillar Bump Structure for Minimizing the Stress in Brittle Low K Dielectric Material Layer

来源期刊:Acta Metallurgica Sinica2020年第4期

论文作者:Xin-Jiang Long Jin-Tang Shang

文章页码:583 - 594

摘    要:Cu pillar bump offers a number of advantages for flip chip packaging,compared to the conventional solder bump.However,due to its rigidity structure,Cu pillar bump introduces a lot of stress to the chip,which causes the failure of packaging structures,especially for the advanced node devices which typically have brittle low K dielectric material.In this paper,for the first time we propose two types of Cu pillar structures to reduce the stress.The first Cu pillar structure has bigger Cu dimensions at the base.The other one is designed to add an additional Cu pad under the Cu pillar bump.Finite element analysis is used to study the stress of the both structures,and it is found that with the increase in pillar bump contact area over the chip surface,the stress decreases in both structures.Results also indicate that the Cu pillar bump undercut induces higher stress,and thin Cu6 Snss intermetallic compound has less impact on the stress during flip chip mount reflow.The study provides a novel way to improve the reliability by reducing the stress in the Cu pillar bump related packaging.

详情信息展示

Design Optimization of Pillar Bump Structure for Minimizing the Stress in Brittle Low K Dielectric Material Layer

Xin-Jiang Long1,Jin-Tang Shang1

1. Key Laboratory of MEMS of Ministry of Education,Southeast University

摘 要:Cu pillar bump offers a number of advantages for flip chip packaging,compared to the conventional solder bump.However,due to its rigidity structure,Cu pillar bump introduces a lot of stress to the chip,which causes the failure of packaging structures,especially for the advanced node devices which typically have brittle low K dielectric material.In this paper,for the first time we propose two types of Cu pillar structures to reduce the stress.The first Cu pillar structure has bigger Cu dimensions at the base.The other one is designed to add an additional Cu pad under the Cu pillar bump.Finite element analysis is used to study the stress of the both structures,and it is found that with the increase in pillar bump contact area over the chip surface,the stress decreases in both structures.Results also indicate that the Cu pillar bump undercut induces higher stress,and thin Cu6 Snss intermetallic compound has less impact on the stress during flip chip mount reflow.The study provides a novel way to improve the reliability by reducing the stress in the Cu pillar bump related packaging.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号