简介概要

Asymmetry in interface and bending property of Al/Cu/Al bimetallic laminates

来源期刊:Rare Metals2014年第5期

论文作者:Xiao-Bing Li Guo-Yin Zu Ping Wang

文章页码:556 - 562

摘    要:This work was aimed to study the interfacial microstructures and three-point bending properties of Al/Cu/Al bimetallic laminates produced by the asymmetrical roll bonding and annealing. It is found that the microstructure and bonding strength of the Al/Cu interface are different with those of the Cu/Al interface. The interfacial microstructure of Cu/Al interface is improved due to the large interfacial plastic deformation caused by the different rotation speeds of roll in the asymmetrical roll bonding process. The bonding strength between Al and Cu layer can be enhanced by the moderate atomic diffusion, but is dramatically depressed by the formation of intermetallic compounds in the interface.The bending strength of bimetallic laminates is enhanced when the Cu/Al interface is loaded in tension because of the improvement of stress transition and damping by the Cu/Al interface during the three-point bending deformation. The bending fracture reveals that the interfacial cracks can be inhibited from the restricted stress concentration in the improved Cu/Al interface.

详情信息展示

Asymmetry in interface and bending property of Al/Cu/Al bimetallic laminates

Xiao-Bing Li,Guo-Yin Zu,Ping Wang

School of Materials and Metallurgy, Northeastern University

摘 要:This work was aimed to study the interfacial microstructures and three-point bending properties of Al/Cu/Al bimetallic laminates produced by the asymmetrical roll bonding and annealing. It is found that the microstructure and bonding strength of the Al/Cu interface are different with those of the Cu/Al interface. The interfacial microstructure of Cu/Al interface is improved due to the large interfacial plastic deformation caused by the different rotation speeds of roll in the asymmetrical roll bonding process. The bonding strength between Al and Cu layer can be enhanced by the moderate atomic diffusion, but is dramatically depressed by the formation of intermetallic compounds in the interface.The bending strength of bimetallic laminates is enhanced when the Cu/Al interface is loaded in tension because of the improvement of stress transition and damping by the Cu/Al interface during the three-point bending deformation. The bending fracture reveals that the interfacial cracks can be inhibited from the restricted stress concentration in the improved Cu/Al interface.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号