简介概要

DTCWPT-TV在高速列车齿轮箱轴承故障诊断中的应用

来源期刊:机械设计与制造2020年第9期

论文作者:杨慧莹 伍川辉 李艳萍 龙莹

文章页码:9 - 29

关键词:振动信号分析;双树复小波包变换;全变差;稀疏追踪;

摘    要:齿轮箱轴承作为高速列车转向架上的关键部件,其故障特征主要体现在其振动信号中,但是列车运行过程中存在强电磁噪声。针对强背景噪声下信号中故障特征频率的提取,提出双树复小波包变换(Dual Tree Complex Wavelet Package Transform,DTCWPT)和全变差(Total Variation,TV)结合的算法。该算法利用DTCWPT将齿轮箱轴承振动信号分解为不同尺度的信号分量,通过峭度指标选择冲击特征最显著的一个信号分量;针对含噪声的冲击特征,通过对该信号分量的全变差进行稀疏追踪从而得到信号的稀疏优化表示,使得振动信号中的冲击特征得到显著增强。通过构造一仿真信号对稀疏追踪算法的有效性进行了验证,并将该方法与DTCWPT结合并应用于齿轮箱轴承故障诊断中,结果表明:该方法能够很好地提取出信号中的冲击特征,并且频谱中的故障表征明显,能够有效地指导故障诊断。

详情信息展示

DTCWPT-TV在高速列车齿轮箱轴承故障诊断中的应用

杨慧莹,伍川辉,李艳萍,龙莹

西南交通大学机械工程学院

摘 要:齿轮箱轴承作为高速列车转向架上的关键部件,其故障特征主要体现在其振动信号中,但是列车运行过程中存在强电磁噪声。针对强背景噪声下信号中故障特征频率的提取,提出双树复小波包变换(Dual Tree Complex Wavelet Package Transform,DTCWPT)和全变差(Total Variation,TV)结合的算法。该算法利用DTCWPT将齿轮箱轴承振动信号分解为不同尺度的信号分量,通过峭度指标选择冲击特征最显著的一个信号分量;针对含噪声的冲击特征,通过对该信号分量的全变差进行稀疏追踪从而得到信号的稀疏优化表示,使得振动信号中的冲击特征得到显著增强。通过构造一仿真信号对稀疏追踪算法的有效性进行了验证,并将该方法与DTCWPT结合并应用于齿轮箱轴承故障诊断中,结果表明:该方法能够很好地提取出信号中的冲击特征,并且频谱中的故障表征明显,能够有效地指导故障诊断。

关键词:振动信号分析;双树复小波包变换;全变差;稀疏追踪;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号