简介概要

Hierarchical TiO2/ZnO Nanostructure as Novel Non-precious Electrocatalyst for Ethanol Electrooxidation

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2015年第1期

论文作者:Gehan M.K.Tolba Nasser A.M.Barakat A.M.Bastaweesy E.A.Ashour Wael Abdelmoez Mohamed H.El-Newehy Salem S.Al-Deyab Hak Yong Kim

文章页码:97 - 105

摘    要:Metal oxides have a higher chemical stability in comparison to metals,so they can be utilized as electrocatalysts if the activity could be enhanced.Besides the composition,the morphology of the nanostructures has a considerable impact on the electrocatalytic activity.In this work,zinc oxide nano branches-attached titanium dioxide nanofibers were investigated as an economic and stable catalyst for ethanol electrooxidation in the alkaline media.The introduced material has been synthesized by electrospinning process followed by hydrothermal technique.Briefly,electrospinning of colloidal solution consisting of titanium isopropoxide,poly(vinyl acetate) and zinc nanoparticles was performed to produce nanofibers embedding solid nanoparticles.In order to produce TiO2 nanofibers containing ZnO nanoparticles,the obtained electrospun nanofiber mats were calcined in air at 600 °C.The formed ZnO nanoparticles were exploited as seeds to outgrow ZnO branches around the TiO2 nanofibers using the hydrothermal technique at sub-critical water conditions in the presence of zinc nitrate and bis-hexamethylene triamine.The morphology of the final product,as well as the electrochemical measurements indicated that zinc nanoparticles content in the original electrospun nanofibers has a significant influence on the electrocatalytic activity as the best performance was observed with the nanofibers synthesized from electrospun solution containing 0.1 g Zn,and the corresponding current density was 37 mA/cm2.Overall,this study paves a way to titanium dioxide to be exploited to synthesize effective and stable metal oxide-based electrocatalysts.

详情信息展示

Hierarchical TiO2/ZnO Nanostructure as Novel Non-precious Electrocatalyst for Ethanol Electrooxidation

Gehan M.K.Tolba1,2,Nasser A.M.Barakat1,3,A.M.Bastaweesy2,E.A.Ashour2,Wael Abdelmoez2,Mohamed H.El-Newehy4,Salem S.Al-Deyab4,Hak Yong Kim1

1. Organic Materials and Fiber Engineering Department,Chonbuk National University2. Chemical Engineering Department,Faculty of Engineering,Minia University3. BioNanosystem Department,Chonbuk National University4. Department of Chemistry,College of Science,King Saud University

摘 要:Metal oxides have a higher chemical stability in comparison to metals,so they can be utilized as electrocatalysts if the activity could be enhanced.Besides the composition,the morphology of the nanostructures has a considerable impact on the electrocatalytic activity.In this work,zinc oxide nano branches-attached titanium dioxide nanofibers were investigated as an economic and stable catalyst for ethanol electrooxidation in the alkaline media.The introduced material has been synthesized by electrospinning process followed by hydrothermal technique.Briefly,electrospinning of colloidal solution consisting of titanium isopropoxide,poly(vinyl acetate) and zinc nanoparticles was performed to produce nanofibers embedding solid nanoparticles.In order to produce TiO2 nanofibers containing ZnO nanoparticles,the obtained electrospun nanofiber mats were calcined in air at 600 °C.The formed ZnO nanoparticles were exploited as seeds to outgrow ZnO branches around the TiO2 nanofibers using the hydrothermal technique at sub-critical water conditions in the presence of zinc nitrate and bis-hexamethylene triamine.The morphology of the final product,as well as the electrochemical measurements indicated that zinc nanoparticles content in the original electrospun nanofibers has a significant influence on the electrocatalytic activity as the best performance was observed with the nanofibers synthesized from electrospun solution containing 0.1 g Zn,and the corresponding current density was 37 mA/cm2.Overall,this study paves a way to titanium dioxide to be exploited to synthesize effective and stable metal oxide-based electrocatalysts.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号