简介概要

基于ART2的Q学习算法研究

来源期刊:控制与决策2011年第2期

论文作者:姚明海 瞿心昱 李佳鹤 顾勤龙 汤丽平

文章页码:227 - 232

关键词:Q学习;ART2;增量式学习;两层在线学习;移动机器人导航;

摘    要:为了解决Q学习应用于连续状态空间的智能系统所面临的"维数灾难"问题,提出一种基于ART2的Q学习算法.通过引入ART2神经网络,让Q学习Agent针对任务学习一个适当的增量式的状态空间模式聚类,使Agent无需任何先验知识,即可在未知环境中进行行为决策和状态空间模式聚类两层在线学习,通过与环境交互来不断改进控制策略,从而提高学习精度.仿真实验表明,使用ARTQL算法的移动机器人能通过与环境交互学习来不断提高导航性能.

详情信息展示

基于ART2的Q学习算法研究

姚明海,瞿心昱,李佳鹤,顾勤龙,汤丽平

浙江工业大学信息工程学院

摘 要:为了解决Q学习应用于连续状态空间的智能系统所面临的"维数灾难"问题,提出一种基于ART2的Q学习算法.通过引入ART2神经网络,让Q学习Agent针对任务学习一个适当的增量式的状态空间模式聚类,使Agent无需任何先验知识,即可在未知环境中进行行为决策和状态空间模式聚类两层在线学习,通过与环境交互来不断改进控制策略,从而提高学习精度.仿真实验表明,使用ARTQL算法的移动机器人能通过与环境交互学习来不断提高导航性能.

关键词:Q学习;ART2;增量式学习;两层在线学习;移动机器人导航;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号